
Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming Languages
2nd edition

Tucker and Noonan

Chapter 1

Overview

A good programming language is a conceptual

universe for thinking about programming.

 A. Perlis

Perspectives on Languages

“The use of COBOL cripples the mind; its

teaching should, therefore, be regarded as a

criminal offense.”

E. W. Dijkstra

Computer Language Design

“Computer language design is just like a

stroll in the park. Jurassic Park, that is.”

Larry Wall

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents

1.1 Principles

1.2 Paradigms

1.3 Special Topics

1.4 A Brief History

1.5 On Language Design

 1.5.1 Design Constraints

 1.5.2 Outcomes and Goals

1.6 Compilers and Virtual Machines

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming languages have four properties:

– Syntax

– Names

– Types

– Semantics

For any language:

– Its designers must define these properties

– Its programmers must master these properties

1.1 Principles

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntax

The syntax of a programming language is a precise

description of all its grammatically correct programs.

When studying syntax, we ask questions like:

– What is the grammar for the language?

– What is the basic vocabulary?

– How are syntax errors detected?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Names

Various kinds of entities in a program have names:

 variables, types, functions, parameters, classes, objects, …

Named entities are bound in a running program to:

– Scope

– Visibility

– Type

– Lifetime

Copyright © 2006 The McGraw-Hill Companies, Inc.

Types

A type is a collection of values and a collection of

operations on those values.

• Simple types

– numbers, characters, booleans, …

• Structured types

– Strings, lists, trees, hash tables, …

• A language’s type system can help to:

– Determine legal operations

– Detect type errors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantics

The meaning of a program is called its semantics.

In studying semantics, we ask questions like:

– When a program is running, what happens to the values of

the variables?

– What does each statement mean?

– What underlying model governs run-time behavior, such

as function call?

– How are objects allocated to memory at run-time?

Copyright © 2006 The McGraw-Hill Companies, Inc.

A programming paradigm is a pattern of problem-

solving thought that underlies a particular genre of

programs and languages.

There are four main programming paradigms:

– Imperative

– Object-oriented

– Functional

– Logic (declarative)

1.2 Paradigms

Copyright © 2006 The McGraw-Hill Companies, Inc.

Imperative Paradigm

Follows the classic von Neumann-Eckert model:

– Program and data are indistinguishable in memory

– Program = a sequence of commands

– State = values of all variables when program runs

– Large programs use procedural abstraction

Example imperative languages:

– Cobol, Fortran, C, Ada, Perl, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

The von Neumann-Eckert Model

Copyright © 2006 The McGraw-Hill Companies, Inc.

Object-oriented (OO) Paradigm

An OO Program is a collection of objects that interact by

passing messages that transform the state.

When studying OO, we learn about:

– Sending Messages

– Inheritance

– Polymorphism

Example OO languages:

 Smalltalk, Java, C++, C#, and Python

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functional Paradigm

Functional programming models a computation as a

collection of mathematical functions.

– Input = domain

– Output = range

Functional languages are characterized by:

– Functional composition

– Recursion

Example functional languages:

– Lisp, Scheme, ML, Haskell, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

Logic Paradigm

Logic programming declares what outcome the

program should accomplish, rather than how it

should be accomplished.

When studying logic programming we see:

– Programs as sets of constraints on a problem

– Programs that achieve all possible solutions

– Programs that are nondeterministic

Example logic programming languages:

– Prolog

Copyright © 2006 The McGraw-Hill Companies, Inc.

• Event handling

– E.g., GUIs, home security systems

• Concurrency

– E.g., Client-server programs

• Correctness

– How can we prove that a program does what it is

supposed to do under all circumstances?

– Why is this important???

1.3 Special Topics

Copyright © 2006 The McGraw-Hill Companies, Inc.

How and when did programming languages evolve?

What communities have developed and used them?

– Artificial Intelligence

– Computer Science Education

– Science and Engineering

– Information Systems

– Systems and Networks

– World Wide Web

1.4 A Brief History

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Design Constraints

– Computer architecture

– Technical setting

– Standards

– Legacy systems

Design Outcomes and Goals

1.5 On Language Design

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

What makes a successful language?

Key characteristics:

– Simplicity and readability

– Clarity about binding

– Reliability

– Support

– Abstraction

– Orthogonality

– Efficient implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Simplicity and Readability

• Small instruction set

– E.g., Java vs Scheme

• Simple syntax

– E.g., C/C++/Java vs Python

• Benefits:

– Ease of learning

– Ease of programming

Copyright © 2006 The McGraw-Hill Companies, Inc.

A language element is bound to a property at the time

that property is defined for it.

So a binding is the association between an object and

a property of that object

– Examples:

• a variable and its type

• a variable and its value

– Early binding takes place at compile-time

– Late binding takes place at run time

Clarity about Binding

Copyright © 2006 The McGraw-Hill Companies, Inc.

Reliability

A language is reliable if:

– Program behavior is the same on different platforms

• E.g., early versions of Fortran

– Type errors are detected

• E.g., C vs Haskell

– Semantic errors are properly trapped

• E.g., C vs C++

– Memory leaks are prevented

• E.g., C vs Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

Language Support

• Accessible (public domain) compilers/interpreters

• Good texts and tutorials

• Wide community of users

• Integrated with development environments (IDEs)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstraction in Programming

• Data

– Programmer-defined types/classes

– Class libraries

• Procedural

– Programmer-defined functions

– Standard function libraries

Copyright © 2006 The McGraw-Hill Companies, Inc.

Orthogonality

A language is orthogonal if its features are built upon

a small, mutually independent set of primitive

operations.

• Fewer exceptional rules = conceptual simplicity

– E.g., restricting types of arguments to a function

• Tradeoffs with efficiency

Copyright © 2006 The McGraw-Hill Companies, Inc.

Efficient implementation

• Embedded systems

– Real-time responsiveness (e.g., navigation)

– Failures of early Ada implementations

• Web applications

– Responsiveness to users (e.g., Google search)

• Corporate database applications

– Efficient search and updating

• AI applications

– Modeling human behaviors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compiler – produces machine code

Interpreter – executes instructions on a virtual

machine

• Example compiled languages:

– Fortran, Cobol, C, C++

• Example interpreted languages:

– Scheme, Haskell, Python

• Hybrid compilation/interpretation

– The Java Virtual Machine (JVM)

1.6 Compilers and Virtual Machines

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Compiling Process

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Interpreting Process

Homework Assignment

Homework 1: Due 8/31/2015

Book, Chapter 1, #1.10

