CHAPTER 4

Section 4.6

Matrices

- Matrix
 - Represents values in rows and columns

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 4 \\ 3 & -6 & 8 \end{bmatrix}$$

- The *dimensions* of a matrix are the number of rows and columns.
 - **A** is a 2×3 matrix.
- Elements of **A** are denoted by a_{ij} , where
 - *i* is the row number and
 - *j* is the column number
 - of the element in the matrix.

Practice 50

In the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & -6 & 8 \\ 3 & 0 & 1 & -7 \end{bmatrix}$$

• What is a_{23} ? What is a_{24} ? What is a_{13} ?

Matrices

- For 2 matrices to be equal,
 - they must have the same dimensions and the same entries in each location.
- Example 63
 - Let

$$\mathbf{X} = \begin{bmatrix} x & 4 \\ 1 & y \\ z & 0 \end{bmatrix} \qquad \mathbf{Y} = \begin{bmatrix} 3 & 4 \\ 1 & 6 \\ 2 & w \end{bmatrix}$$

• If X = Y, then x = 3, y = 6, z = 2 and w = 0.

Square Matrices

- In a square matrix
 - The number of row equals the number of columns.

$$\mathbf{A} = \begin{bmatrix} 1 & 5 & 7 \\ 5 & 0 & 2 \\ 7 & 2 & 6 \end{bmatrix}$$

- **A** is a 3×3 matrix. The elements a_{11} , a_{22} , and a_{33} form the main diagonal of the matrix.
- In general, if A is an $n \times n$ matrix, the elements $a_{11}, a_{22}, ..., a_{nn}$ form the main diagonal of the matrix.

Matrices and Arrays

- A matrix is a 2-dimensional array.
 - To represent a matrix in a programming language, you can use a 2dimensional array.
- A 1-dimensional array is called a vector.

Matrix Operations

- Scalar multiplication
 - Multiply each entry of a matrix by a fixed single number called a scalar.
 - Example 65: Multiply **A** by the scalar r = 3.

$$\mathbf{A} = \begin{bmatrix} 1 & 4 & 5 \\ 6 & -3 & 2 \end{bmatrix}$$

• What is *r*A?

Matrix Addition

- To add 2 matrices
 - The matrices must have the same dimensions
 - Add the corresponding elements.
 - Example 66

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 6 \\ 2 & 0 & 4 \\ -4 & 5 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 0 & -2 & 8 \\ 1 & 5 & 2 \\ 2 & 3 & 3 \end{bmatrix}$$

What is A + B?

Practice 51

• For r = 2

$$\mathbf{A} = \begin{bmatrix} 1 & 7 \\ -3 & 4 \\ 5 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 0 \\ 9 & 2 \\ -1 & 4 \end{bmatrix}$$

• Find *r***A** + **B**.

Matrix Subtraction

• Subtraction: $\mathbf{A} - \mathbf{B} = \mathbf{A} + (-1)\mathbf{B}$

$$\mathbf{A} = \begin{bmatrix} 1 & 7 \\ -3 & 4 \\ 5 & 6 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 4 & 0 \\ 9 & 2 \\ -1 & 4 \end{bmatrix}$$

Zero Matrix

- Zero matrix
 - All entries are 0

$$\mathbf{0} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• What happens if we add 0 to some matrix A?

Example 67

If A and B are n × m matrices and r and s are scalars
the following matrix equations are true.

$$0 + A = A$$

$$A + B = B + A$$

$$(A + B) + C = A + (B + C)$$

$$r(A + B) = rA + rB$$

$$(r + s)A = rA + sA$$

$$r(sA) = (rs)A$$

Matrix Multiplication

- To compute $\mathbf{A} \cdot \mathbf{B}$,
 - The number of columns in ${\bf A}$ must match the number of rows in ${\bf B}$
 - If A is an $n \times m$ matrix, then B must be an $m \times p$ matrix
 - The result is an *n* x *p* matrix
 - Let $\mathbf{A} \cdot \mathbf{B} = \mathbf{C}$. Then

$$c_{ij} = \sum_{k=1}^{m} a_{ik} b_{kj}$$

 An entry in row *i*, column *j* of C is calculated by multiplying elements in row *i* of A by the corresponding elements in column *j* of B and adding the results.

Matrix Multiplication

- Example 68
 - Find $\mathbf{A}\cdot \mathbf{B}$

$$\mathbf{A} = \begin{bmatrix} 2 & 4 & 3 \\ 4 & -1 & 2 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 5 & 3 \\ 2 & 2 \\ 6 & 5 \end{bmatrix}$$

Matrix Multiplication

- Practice 52
 - Compute $\mathbf{A} \cdot \mathbf{B}$ and $\mathbf{B} \cdot \mathbf{A}$

$$\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 6 & -2 \end{bmatrix} \qquad \qquad \mathbf{B} = \begin{bmatrix} 3 & 6 \\ 3 & 4 \end{bmatrix}$$

Matrices Equations

- Example 69
 - Given matrices A, B, and C of appropriate dimensions, and
 - the scalar values r and s, then

 $A(B \cdot C) = (A \cdot B)C$ $A(B + C) = A \cdot B + A \cdot C$ $(A + B)C = A \cdot C + B \cdot C$ $rA \cdot sB = (rs)(A \cdot B)$

Identity Matrix

 Identity matrix: an n x n matrix with 1s along the main diagonal and 0s elsewhere

• The following is the identity matrix with n = 4.

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Identity Matrix

• The following equation is true for I, where A is an *n* x *n* matrix.

 $\mathbf{I} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{I} = \mathbf{A}$

• Practice 53: Verify that $\mathbf{I} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{I} = \mathbf{A}$ given the following \mathbf{A} and \mathbf{I} .

$$\mathbf{I} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

Identity Matrix

 An n x n matrix A is invertible if there exists an n x n matrix B such that

 $\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A} = \mathbf{I}$

- B is the inverse of A, denoted by A⁻¹.
- Ex. 70: Given A and B below, show $\mathbf{B} = \mathbf{A}^{-1}$

$$\mathbf{A} = \begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{bmatrix}$$

Boolean Matrices

- A Boolean matrix consists of only 0s and 1s.
- Boolean operations
 - **Boolean addition**: $x \lor y = \max(x, y)$
 - To compute A v B, combine corresponding elements using Boolean addition

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Boolean Matrices

- Boolean operations
 - Boolean multiplication: $x \land y = \min(x, y)$
 - To compute $\mathbf{A} \wedge \mathbf{B},$ combine corresponding elements using Boolean multiplication
- Compute $A \wedge B$ for the previous matrices.

Boolean Matrix Multiplication

• Boolean matrix multiplication $(A \times B)$ can be defined in terms of Boolean addition and Boolean multiplication

$$c_{ij} = \bigvee_{k=1}^{m} (a_{ij} \wedge b_{kj})$$

- Compute $\mathbf{A} \times \mathbf{B}$ on the previous matrices.
- Practice 56: Does $\mathbf{A} \times \mathbf{B} = \mathbf{A} \cdot \mathbf{B}$?
- Practice 57: Compute $\mathbf{B} \times \mathbf{A}$.