
CHAPTER 4 
Section 4.6 



Matrices 
• Matrix 

•  Represents values in rows and columns 

•  The dimensions of a matrix are the number of rows and columns. 
•  A is a 2 × 3 matrix. 

•  Elements of A are denoted by aij, where  
•  i is the row number and  
•  j is the column number  

    of the element in the matrix. 
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Practice 50 
•  In the matrix 

• What is a23? What is a24? What is a13? 
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Matrices 
• For 2 matrices to be equal, 

•  they must have the same dimensions and the same 
entries in each location. 

• Example 63 
•  Let  

•  If X = Y, then x = 3, y = 6, z = 2 and w = 0. 

!
!
!

"

#

$
$
$

%

&

=

0

4
1 y
z

x
X

!
!
!

"

#

$
$
$

%

&

=

w
6
4

2
1
3

Y

4 

4 



Square Matrices 
•  In a square matrix 

•  The number of row equals the number of columns. 

• A is a 3 × 3 matrix. The elements a11, a22, and a33 form 
the main diagonal of the matrix. 

•  In general, if A is an n × n matrix, the elements  
a11, a22, …, ann form the main diagonal of the matrix. 
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Matrices and Arrays 
• A matrix is a 2-dimensional array. 

•  To represent a matrix in a programming language, you can use a 2-
dimensional array. 

• A 1-dimensional array is called a vector. 
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Matrix Operations 
• Scalar multiplication 

• Multiply each entry of a matrix by a fixed single number 
called a scalar. 

• Example 65: Multiply A by the scalar r = 3. 

• What is rA? 
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Matrix Addition 
• To add 2 matrices 

•  The matrices must have the same dimensions 
• Add the corresponding elements. 
• Example 66 

• What is A + B? 
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Practice 51 
• For r = 2 

• Find rA + B. 
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Matrix Subtraction 
• Subtraction: A – B = A + (– 1)B 
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Zero Matrix 
• Zero matrix 

• All entries are 0 

• What happens if we add 0 to some matrix A? 
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Example 67 
•  If A and B are n × m matrices and r and s are scalars 

•  the following matrix equations are true. 
   0 + A = A 
   A + B = B + A 
   (A + B) + C = A + (B + C) 
   r(A + B) = rA + rB 
   (r + s)A = rA + sA 
   r(sA) = (rs)A 
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Matrix Multiplication 
• To compute A ⋅ B, 

•  The number of columns in A must match the number of 
rows in B 
•  If A is an n x m matrix, then B must be an m x p matrix 
•  The result is an n x p matrix 

•  Let A ⋅ B = C. Then 

• An entry in row i, column j of C is calculated by 
multiplying elements in row i of A by the corresponding 
elements in column j of B and adding the results. 
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Matrix Multiplication 
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• Example 68 
•  Find A ⋅ B  
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Matrix Multiplication 
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• Practice 52 
•  Compute A ⋅ B and B ⋅ A 
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Matrices Equations 
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• Example 69 
•  Given matrices A, B, and C of appropriate dimensions, and  
•  the scalar values r and s, then 



Identity Matrix 
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•  Identity matrix: an n x n matrix with 1s along the 
main diagonal and 0s elsewhere 
•  The following is the identity matrix with n = 4. 



Identity Matrix 
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•  The following equation is true for I, where A is an n x n 
matrix. 

  I ⋅ A = A ⋅ I = A 
•  Practice 53: Verify that I ⋅ A = A ⋅ I = A given the following A 

and I. 
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Identity Matrix 
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• An n x n matrix A is invertible if there exists an n x n 
matrix B such that  

  A ⋅ B = B ⋅ A = I 
•  B is the inverse of A, denoted by A-1. 
•  Ex. 70: Given A and B below, show B = A-1 

!
!
!

"

#

$
$
$

%

&

'

'

''

=

568
6710
345

B



Boolean Matrices 
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• A Boolean matrix consists of only 0s and 1s. 
• Boolean operations 

• Boolean addition: x ∨ y = max(x, y) 
•  To compute A ∨ B, combine corresponding 

elements using Boolean addition 
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Boolean Matrices 
• Boolean operations 

•  Boolean multiplication: x ∧ y = min(x, y)  
•  To compute A ∧ B, combine corresponding elements using Boolean 

multiplication 

• Compute A ∧ B for the previous matrices.  
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Boolean Matrix Multiplication 
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• Boolean matrix multiplication (A × B) can 
be defined in terms of Boolean addition and 
Boolean multiplication 

• Compute A × B on the previous matrices.  
• Practice 56: Does A × B = A ⋅ B? 
• Practice 57: Compute B × A.  


