CHAPTER 4

Section 4.1

Relations

- Binary relation
 - A relationship between pairs of elements within a set
 - Example 1
 - Cartesian product, $S \times S$ or S^2
 - *S* = {1, 2, 3}
 - $S^2 = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - Consider the equality relationship.
 - Which pairs of *S*² satisfy this relationship?
 - Given ordered pairs (x,y), we want those where x=y.

Relations

- Generally
 - x ρ y: the ordered pair (*x*,*y*) satisfies relation ρ
 - To define a relation ρ
 - describe it in words, or
 - list the ordered pairs that satisfy the relation.
- Example 2
 - $S = \{1, 2, 4\}$
 - ρ is defined by $x \rho y$ if and only if x = y/2
 - $x \rho y \Leftrightarrow x = y/2$

Binary Relation on a Set

- Binary relation on a Set, S
 - Given a set S, a binary relation on a set S is a subset of S × S (a set of ordered pairs of elements of S).
 - $x \rho y \Leftrightarrow (x,y) \in \rho$
- Typically, to define a relation, we describe it instead of listing its ordered pairs.
 - Binary relation implies a yes/no result
 - An ordered pair either does or does not belong to the relation

Relation Recap

- Binary Relation ρ on a set S
 - Defines a relationship between members of *S*.
 - If our relation ρ is "greater than", and 3 ρ 1 (3 is related to 1), that means 3 is greater than 1.
 - If 2 elements of *S* are related by ρ , they are listed as an ordered pair in ρ .
 - If *x* is related to *y*, then $(x,y) \in \rho$
 - $(x,y) \in \rho$ means x is related to y.
 - If our relation is "greater than" and 3 ρ 1, then (3,1) will be a member of the set ρ
 - Note that "*x* is related to *y*" means (*x*,*y*) is in the relation, **not** that (*y*,*x*) is in the relation. "*x* is related to *y*" is **different** from "*y* is related to *x*".

Binary Relation on a Set

- Example 3
 - Let $S = \{1,2\}$.
 - $S \times S = ?$
 - ρ on *S* is defined by $x \rho y \Leftrightarrow x + y$ is odd.
 - What are the members of ρ ?

Relation on Multiple Sets

- Relations on multiple sets
 - Given two sets S and T, a binary relation from S to T is a subset of S × T
 - Given *n* sets S₁, S₂, ..., S_n, n > 2, an *n*-ary relation on S₁ × S₂ × ... × S_n is a subset of
 - $S_1 \times S_2 \times \ldots \times S_n$

Relations on Multiple Sets

- Example 5
 - Let $S = \{1, 2, 3\}$ and $T = \{2, 4, 7\}$
 - What is $S \times T$?
 - The set {(1,2), (2,4), (2,7)} consists of elements from $S \times T$
 - So, the set is a binary relation from *S* to *T*
- We will be focusing on relations on a single set.

Practice 1

- For each of the following binary relations ρ on *N*, decide which of the given ordered pairs belong to ρ .
 - $x \rho y \Leftrightarrow x = y + 1;$ (2,2), (2,3), (3,3), (3,2)
 - $x \rho y \Leftrightarrow x \text{ divides } y; (2,4), (2,5), (2,6)$
 - $x \rho y \Leftrightarrow x \text{ is odd};$ (2,3), (3,4), (4,5), (5,6)
 - $x \rho y \Leftrightarrow x > y^2$; (1,2), (2,1), (5,2), (6,4), (4,3)

Types of Relations

- Let

 be a binary relation on S
 - ρ consists of a set of ordered pairs of the form (s_1, s_2)
 - There are various ways to pair s₁ and s₂
 - One-to-one relation: each s_1 and s_2 only appear once
 - **One-to-many** relation: some *s*₁ appears more than once
 - Many-to-one relation: some s₂ appears more than once
 - Many-to-many relation: at least one s_1 is paired with more than one s_2 , and at least one s_2 is paired with more than one s_1

Practice 2

- $S = \{2, 5, 7, 9\}$
- Identify the following relations on S as one-to-one, one-to-many, many-to-one, or many-to-many
 - { (5,2), (7,5), (9,2) }
 - { (2,5), (5,7), (7,2) }
 - { (7,9), (2,5), (9,9), (2,7) }

Binary Relations

- Suppose *B* is the set of all binary relations on a given set
 - If ρ and σ belong to *B*, then they are subsets of $S \times S$
 - Since ρ and σ are sets, we can perform set operations on them, such as union, intersection and complementation
 - Results in new subsets of $S \times S$, which are new binary relations.
 - $\rho \cup \sigma$, $\rho \cap \sigma$, and ρ'

Binary Relations

- $\rho \cup \sigma$ $x (\rho \cup \sigma) y \Leftrightarrow x \rho y \text{ or } x \sigma y$ i.e., the pair (*x*,*y*) satisfies
 - i.e., the pair (*x*,*y*) satisfies the relation $\rho \cup \sigma$ if and only if (*x*,*y*) satisfies the relation $\rho \text{ or } (x,y)$ satisfies the relation σ

• $\rho \cap \sigma$ $x (\rho \cap \sigma) y \Leftrightarrow x \rho y \text{ and } x \sigma y$ • ρ' $x \rho' y \Leftrightarrow \operatorname{not} x \rho y$

Practice 3

- Let ρ and σ be two binary relations on N, defined by
 - $x \rho y \Leftrightarrow x = y \text{ and } x \sigma y \Leftrightarrow x < y$
- Give verbal descriptions for (a), (b), and (c); give a set description for (d).
 - What is the relation $\rho \cup \sigma$?
 - What is the relation ho'?
 - What is the relation σ' ?
 - What is the relation $\rho \cap \sigma$?

Relation Facts / Identities

1a. $\rho \cup \sigma = \sigma \cup \rho$	1b. $\rho \cap \sigma = \sigma \cap \rho$
2a. ($\rho \cup \sigma$) $\cup \gamma$	2b. ($\rho \cap \sigma$) $\cap \gamma$
$= \rho \cup (\sigma \cup \gamma)$	$= \rho \cap (\sigma \cap \gamma)$
3a. $ ho \cup (\sigma \cap \gamma)$	3b. $\rho \cap (\sigma \cup \gamma)$
$= (\rho \cup \sigma) \cap (\rho \cup \gamma)$	$= (\rho \cap \sigma) \cup (\rho \cap \gamma)$
4a. $\rho \cup \varnothing = \rho$	4b. $\rho \cap S^2 = \rho$
5a. $ ho \cup ho' = S^2$	5b. $\rho \cap \rho' = \emptyset$

Properties of Relations

- Properties of relations
 - *Reflexive*: for every element *e* in the set *S*, the ordered pair (*e*,*e*) must be a member of the relation
 - $(\forall e)(e \in S \rightarrow (e,e) \in \rho)$
 - Given *S*={1,b}, the set {(1,1),(1,b),(b,b)} is reflexive, but the set {(1,1),(1,b)} is not reflexive.
 - Symmetric: If the ordered pair (x_1, x_2) is a member of the relation, then (x_2, x_1) must also be a member of the relation.
 - $(\forall x_1)(\forall x_2)(x_1 \in S \land x_2 \in S \land (x_1, x_2) \in \rho \rightarrow (x_2, x_1) \in \rho)$
 - Given $S = \{1, 2, 3\}$
 - {(1,1),(2,1),(1,2)} is symmetric; {(1,1),(2,1)} is not.

Properties of Relations

- Properties of relations
 - Not Symmetric: At least one ordered pair (x_1, x_2) is in the relation where (x_2, x_1) is not in the relation.
 - {(1,1), (1,3), (3,1), (2,1)} is not symmetric because of (2,1)
 - Antisymmetric: there are no symmetric members of the relation where x ≠ y.
 - (1,1) can be in an antisymmetric relation
 - (2,1) and (1,2) cannot be together in an antisymmetric relation
 - {(1,1), (2,2), (3,2)} is antisymmetric
 - {(1,1), (2,2), (3,2), (2,1), (1,2)} is **not** antisymmetric.
 - Antisymmetric ≠ not symmetric

Properties of Relations

- More Properties
 - Transitive: If you have the ordered pairs

 (x₁, x₂) and (x₂, x₃) in the relation, then the ordered pair (x₁, x₃) must also be in the relation
 - $(\forall x_1)(\forall x_2)(\forall x_3)(x_1 \in S \land x_2 \in S \land x_3 \in S \land (x_1, x_2) \in \rho \land (x_2, z) \in \rho \rightarrow (x_1, x_3) \in \rho)$
 - If x_1 is related to x_2 , and x_2 is related to x_3 , then x_1 must be related to x_3 .
 - The set {(1,2),(2,1),(1,1),(2,2)} is transitive.
 - The set {(1,1),(3,1),(2,3)} is not transitive.

Example 6

- Consider the relation \leq on the set N.
- Is the relation
 - Reflexive?
 - Transitive?
 - Symmetric?

Problem 10

- Let $S = \{0, 1, 2, 4, 6\}$.
- Are the following reflexive, symmetric, antisymmetric, and/or transitive?
 - a. $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$
 - b. $\rho = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$
 - c. $\rho = \{(0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2)\}$
 - $d. \quad \rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (4,6), (6,4)\}$

Closure of a Relation

- Let ρ be a relation on set S
- A binary relation ρ^* on set *S* is the closure of ρ with respect to property *P* if
 - ρ^* has property P
 - $\rho \subseteq \rho^*$
 - ρ^* is a subset of any other relation on *S* that includes ρ and has property *P*.
- What if ρ already has property *P*?

Practice / Problems

- Practice 6
 - Does it make sense to look for the antisymmetric closure of a relation on a set?
- Find the reflexive, symmetric, and transitive closure of the sets from Problem 10.
 - a. $\rho = \{(0,0), (1,1), (2,2), (4,4), (6,6), (0,1), (1,2), (2,4), (4,6)\}$
 - b. $\rho = \{(0,1), (1,0), (2,4), (4,2), (4,6), (6,4)\}$
 - c. $\rho = \{(0,1), (1,2), (0,2), (2,0), (2,1), (1,0), (0,0), (1,1), (2,2)\}$
 - $d. \quad \rho = \{(0,0),(1,1),(2,2),(4,4),(6,6),(4,6),(6,4)\}$

Partial Orderings

- A partial ordering on a set S is
 - A binary relation on *S* that is reflexive, antisymmetric, and transitive.
 - Considered *partial* because there may be some elements from *S* that are not related.
 - Examples of partial orderings
 - On N, $x \rho y \Leftrightarrow x \leq y$
 - On $\mathscr{D}(N)$, $A \rho B \Leftrightarrow A \subseteq B$
 - On Z+, $x \rho y \Leftrightarrow x$ divides y
 - On $\{0,1\}$, $x \rho y \Leftrightarrow x = y^2$

Partial Orderings

- A partially ordered set is an ordered pair (S, \leq) , where \leq is a partial ordering on the set *S*.
 - Also called a poset.
- Notation for an arbitrary, partially ordered set is
 - (S, \leq)
 - Replace ≤ with the appropriate relation, such as "x divides y" or "x is less than or equal to y"

Restriction of Partial Ordering

- Let (S, \leq) be a partially ordered set.
- Let A be a subset of S
 - \leq is a set of ordered pairs of elements of S
 - Some members of ≤ may be ordered pairs of elements of A.
- - This new set is a partial ordering on A, and is called the restriction of ≤ to A

Partially Ordered Sets

- Let (S, \leq) be a partially ordered set
- In a partial ordering, elements in an ordered pair may or may not be equal.
 - The elements in the ordered pair (4,4) are equal (4=4).
 - The elements in the ordered pair (4,10) are not equal $(4 \neq 10)$.
- If $x \le y$, but $x \ne y$
 - *x* is a **predecessor** of *y*
 - *y* is a **successor** of *x*
 - Written as x < y
- If x < y and there is no z with x < z < y
 - Then *x* is an **immediate predecessor** of *y*

Partially Ordered Sets

- Practice 8
 - Consider the relation "*x* divides *y*" on {1, 2, 3, 6, 12, 18}
 - Write the ordered pairs (*x*, *y*) of this relation
 - Write all the predecessors of 6
 - Write all the immediate predecessors of 6

Hasse Diagram

- Used to visually represent a partially ordered set (S, \leq) , given a finite set S.
 - Each element of *S* is a node of the diagram
 - If *x* is an immediate predecessor of *y*
 - The node for *y* is placed above the node for *x*.
 - The 2 nodes are connected by a straight-line segment.

•
$$S = \{x, y\}, \le = \{(x,x), (x,y), (y,y)\}$$

•
$$S = \{x, y, z\}, \le = \{(x, x), (y, y), (z, z), (x, y), (x, z)\}$$

Hasse Diagram Examples

- S = {1,4,8}
 - $\leq = \{(1,1), (4,4), (8,8), (1,4), (4,8), (1,8)\}$
- $S = \{a, b, c, d\}$
 - $\leq = \{(a,a), (b,b), (c,c), (d,d), (a,b), (a,c), (b,d), (a,d)\}$
 - Draw the Hasse diagram for the partially ordered set.

Example 10

- - We already know that (℘(N),⊆) is a partially ordered set.
 - What are the elements of $\wp(\{1,2\})$?
 - What are the ordered pairs of the binary relation \subseteq on *S*?
 - Draw the Hasse Diagram for the partially ordered set.

Hasse Diagram

- Practice 9
 - Draw the Hasse Diagram for the relation "*x* divides *y*" on {1, 2, 3, 6, 12, 18}
 - $\leq = \{ (1,1), (1,2), (1,3), (1,6), (1,12), (1,18), \\ (2,2), (2,6), (2,12), (2,18), (3,3), (3,6), \\ (3,12), (3,18), (6, 6), (6,12), (6,18), \\ (12,12), (18,18) \}$
 - Are all of the elements of *S* related?

Hasse Diagram

- Hasse diagram of a partially ordered set conveys all the information about the partially ordered set.
 - The ordered pairs of the partially ordered set can be reconstructed from a Hasse diagram.
 - Example (Figure 4.3 in book)

Total Ordering (Chain)

- Total Ordering
 - A partial ordering in which every element of the set is related to every other element.
 - Also called a chain
 - Example (Figure 4.4)
 - "Less than or equal to" relation on N is an example of a total ordering

Least & Minimal Element

- Let (S, \leq) be a partially ordered set.
 - If there is a $y \in S$ with $y \leq x$ for all $x \in S$
 - *y* is the **least** element of (*S*, \leq)
 - A least element (if it exists) is unique
 - If there is a $y \in S$ such that there is no $x \in S$ with x < y
 - y is a **minimal** element of (S, \leq)
- In a Hasse diagram
 - A least element is below all others
 - A minimal element has no others below it

Greatest & Maximal Element

- Let (S, \leq) be a partially ordered set.
 - If there is a $y \in S$ with $x \leq y$ for all $x \in S$
 - *y* is the **greatest** element of (S, \leq)
 - A greatest element (if it exists) is unique
 - If there is a *y* ∈ *S* such that there is no *x* ∈ *S* with *y* < *x y* is a maximal element of (*S*, ≤)
- In a Hasse diagram
 - A greatest element is above all others
 - A maximal element has no others above it

Example 11

- Consider the partially ordered set of Practice 9.
 - Identify the least, minimal, greatest, and maximal elements, if they exist.
- Practice 11
 - Draw the Hasse diagram for a partially ordered set with 4 elements in which there are
 - 2 minimal elements but no least element
 - 2 maximal elements but no greatest element
 - Each element is related to exactly 2 other elements

Equivalence Relations

- Equivalence Relation on ${\cal S}$
 - A binary relation on a set *S* that is reflexive, symmetric and transitive
 - An equivalence relation differs from a partial ordering in symmetry.
 - A partial ordering is antisymmetric; an equivalence relation is symmetric
 - Examples
 - On any set *S*, $x \rho y \Leftrightarrow x = y$.
 - On $\{a, b, c\}$, $\rho = \{(a,a), (b,b), (c,c), (a,b), (b,a)\}$
 - {x | x is a student in your class} and ρ is the relation "x sits in the same row as y"

Equivalence Relations

- Partition of a set
 - A collection of nonempty disjoint subsets of S whose union equals
 - Example
 - $S = \{x \mid x \text{ is a student in your class}\}$
 - $x \rho y \Leftrightarrow x$ sits in the same row as y
 - Group all students related to one another
 - Those that sit in row 1, those that sit in row 2, etc.
- Any equivalence relation partitions the set on which it is defined

Equivalence Relations

- Let ρ be an equivalence relation on a set *S* and $x \in S$
 - [x] denotes the set of all members of *S* to which *x* is related (including *x* itself)
 - [x] is called the **equivalence class** of x.

Equivalence Class

- Example 12
 - $x \rho y \Leftrightarrow$ "x sits in the same row as y"
 - John, Chuck, José, Judy, and Ted all sit in row 3
 - What is [John]?
 - What is [Judy]?

Equivalence Relations & Partitions

- An equivalence relation ρ on a set S determines a partition of S, and
- A partition of a set S determines an equivalence relation on S
- Partial proof in textbook

Practice 14

- For the following equivalence relation, describe the corresponding equivalence classes
 - On {1, 2, 3}, $\rho = \{(1,1), (2,2), (3,3), (1,2), (2,1)\}$