CHAPTER 3

Section 3.5

Probability

- Given all possible outcomes of an action (sample space), we want to know the likelihood of a specific event occurring.
 - An event is the occurrence of one of more of the outcomes (a set of outcomes).
- Toss a coin.
 - What is the chance of getting *heads*?
 - What is the chance of getting *tails*?
 - Toss the coin twice, what is the chance of getting *heads* followed by *tails*?

Probability

- We assume outcomes equally likely in the previous examples
 - A balanced coin
 - Getting heads or getting tails is equally likely.
 - An unloaded die
 - Any particular number is just as likely as the others of occurring.

Probability Formula

- Given:
 - Sample Space, S, which consists of a finite set of equally likely outcomes
 - Event $E, E \subseteq S$
- Probability P(E) of event E occurring is

$$P(E) = \frac{|E|}{|S|}$$

Equally likely outcomes

- Roll a die.
 - What is the likelihood (or probability) of rolling a 2?
 - Assuming the die is not loaded, each number is equally likely.
 - How many possible outcomes are there?
 - Our **sample space** is the set {1, 2, 3, 4, 5, 6}
 - Getting a 2 is exactly one of those possibilities.
 - Our **event** is the set {2}.
 - What is the likelihood of getting a 2 or a 3?
 - Same number of outcomes still talking about 1 roll
 - Our event in this case is the set {2, 3}, which represents 2 of the possible 6 outcomes.

Practice 39

- What is the probability of drawing an ace from a standard (fair) deck of cards?
- Questions to ask
 - What is the sample space, S? What is the size of the sample space, |S|?
 - Are the outcomes equally likely?
 - What is the event *E*? What is the size of the event, |*E*|?

Probability

- Events are sets, so we can use set operations to combine them.
- Given events E_1 and E_2 from S
 - The event $E_1 \cup E_2$ represents the outcomes that are in E_1 , E_2 , or both.
 - The event $E_1 \cap E_2$ represents the outcomes that are in both E_1 and E_2

Probability

- Think about 2 tosses of a coin
 - What is the probability of getting
 - a heads on either toss
 - a heads on each toss
 - Let E_1 be the event that you get heads on the first toss
 - Let E_2 be the event that you get heads on the second toss
 - $S = \{HH, HT, TH, TT\}$
 - *E*₁ = {HH, HT}
 - *E*₂ = {HH, TH}
 - $E_1 \cup E_2 = \{HH, HT, TH\}$
 - $E_1 \cap E_2 = \{HH\}$

Example 65

- Employees participate in a drawing in which one employee name is chosen. There are
 - 5 employees in testing (2 men, 3 women)
 - 23 in development (16 men, 7 women)
 - 14 in marketing (6 men, 8 women)
 - What is the size of the sample space?
 - Let W be the event that a woman's name is drawn
 - What is the size of W? What is the probability of W?
 - Let M be the event that someone from marketing's name was drawn
 - What is the size of M? What is the probability of M?
 - What is the probability that the name of a woman from marketing was drawn?

Table 3.3

	Observation	Justification
1	$0 \le P(E_1) \le 1$	$E_1 \subseteq S$, so $0 \le E_1 \le S $
2	The probability of an impossibility is 0.	$E_1 = \emptyset$ so $ E_1 = 0$
3	The probability of a certainty is 1.	$ E_1 = S$ so $ E_1 = S $
4	$P(E_1') = 1 - P(E_1)$	$ E_1' = S - E_1 $
5	$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$	See previous discussion.
6	If E_1 and E_2 are disjoint events, then $P(E_1 \cup E_2) = P(E_1) + P(E_2)$	Follows from observation 5.

Outcomes not Equally Likely

- Roll an unfair die.
 - 4 is three times more likely to come up than 1, 2, 3, 5, or 6.
 - Can repeat the event that is more likely.

• S = {1, 2, 3, 4₁, 4₂, 4₃, 5, 6}

• What is P(3)? P(4)? P(3 or 4)?

• Can assign a probability distribution to the sample space.

x _i			3	4	5	6	
$p(x_i)$	1/8	1/8	1/8	3/8	1/8	1/8	

Probability Distributions

- Consider each distinct outcome in the original sample space as an event and assign it a probability.
 - k different outcomes in S
 - Each outcome x_i is assigned probability $p(x_i)$

1.
$$0 \le p(x_i) \le 1$$

2. $\sum_{i=1}^{k} p(x_i) = 1$

Probability Distributions

• Consider an event $E \subseteq S$

•
$$P(E) = \sum_{x_i \in E} p(x_i)$$

- Add up all of the probabilities for the individual outcomes in *E*.
- Practice 41
 - S = {a, b, c}
 - p(a) = 0.2
 - p(b) = 0.3
 - What is p(c)? What is P(a or c)?

Conditional Probability

- Sometimes need to determine the probability of event E_2 given that event E_1 has occurred.
 - The first event occurring affects the number of outcomes for the second event.
 - Practice 42
 - What is the probability of tossing 2 heads given that at least one toss results in heads?

Conditional Probability

 In general, the conditional probability of *E*₂ given *E*₁ is

$$P(E_2 | E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

 Kind of restricting our sample space to be the outcomes in event E₁

Independent Events

- What if $P(E_2 | E_1) = P(E_2)$?
 - In this case, the likelihood of E_2 occurring is not affected by whether or not E_1 occurred.
 - E_1 and E_2 are **independent events**, and we have

$$P(E_2 | E_1) = P(E_2) = \frac{P(E_1 \cap E_2)}{P(E_1)}$$

 $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$

- This can be extended to any finite number of independent events.
- Can also be used to test whether events are independent.

Independent Events

- Outcome of a specific toss of a coin does not depend on the outcome of any previous tosses.
 - Any toss has a 50/50 chance of getting heads,
 - whether it's the first or the 50th, and
 - whether or not the previous 49 tosses have been heads.

Probability

- "Addition Rule" for Probability
 - If E_1 and E_2 are disjoint events
 - $P(E_1 \cup E_2) = P(E_1) + P(E_2)$
 - Otherwise use principle of inclusion and exclusion.

• $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$

- "Multiplication Rule" for Probability
 - If E₁ and E₂ are independent events
 P(E₁ ∩ E₂) = P(E₁) · P(E₂)
- These can be extended to any finite set of events.

Expected Value

- Student takes 3 tests
 - Set of grades $S = \{g_1, g_2, g_3\}$
 - What is the average test grade?
 - Assuming 3 tests are equally weighted

$$A(g) = \frac{g_1 + g_2 + g_3}{3}$$
$$= \frac{1}{3}(g_1 + g_2 + g_3)$$
$$= g_1\left(\frac{1}{3}\right) + g_2\left(\frac{1}{3}\right) + g_3\left(\frac{1}{3}\right)$$

Expected Value

 If last test counts twice as much, the weighted average grade is

$$A(g) = g_1 \left(\frac{1}{4}\right) + g_2 \left(\frac{1}{4}\right) + g_3 \left(\frac{2}{4}\right)$$

Assign a probability distribution to S

X _i	g_1	g_2	g_3
$p(x_i)$	1/4	1/4	2/4

Then

$$A(g) = \sum_{i=1}^{3} g_i p(g_i)$$

Expected Value

- Values in sample space may not be numeric.
 - Can assign a function $X: S \rightarrow \mathbb{R}$
 - The function *X* is called a **random variable**
 - The function associates a numeric value with each outcome in the sample space
 - Expected value, or weighted average, of the random variable is

$$E(x) = \sum_{i=1}^{n} X(x_i) p(x_i)$$

Example 71

- Toss a fair coin three times.
 - $S = \{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT\}$
 - Let random variable X for an outcome be the number of heads in that outcome.
 - Integer value between 0 and 3
 - What is the expected value of *X*, that is, the expected number of heads in three tosses?

Algorithm Analysis

- Expected value can be used in algorithm analysis to perform average case analysis
 - Expected average amount of work done by an algorithm

$$E(X) = \sum_{i=1}^{n} X(x_i) p(x_i)$$

- Where $X(x_i)$ is the work done for case *i*, and
- $p(x_i)$ is the probability of x_i

Problems 6-12

- A pair of fair dice are rolled
 - What is the size of the sample space?
 - What is the probability of getting
 - snake eyes (two 1s)?
 - doubles (the same number on each die)?
 - a total of 7 on the two dice?
 - a 1 on at least one die?
 - a total on the two dice greater than 10?
 - a total on the two dice that is an odd number?

5-card poker hand

Problems 29-33

•	2	3	4	5	6	7	8	9	10	J	Q	K	A
•	2	3	4	5	6	7	8	9	10	J	Q	K	Α
۷	2	3	4	5	6	7	8	9	10	J	Q	K	Α
	2	3	4	5	6	7	8	9	10	J	Q	K	Α

Problems 53-59

- A family has 3 children; boys and girls are equally likely offspring.
 - What is the probability
 - that the oldest child is a boy?
 - of 2 boys and 1 girl?
 - of no girls?
 - of at least one girl?
 - of 3 girls?
 - of 3 girls given that the first two are girls?
 - of at least 1 boy and at least one girl, given that there is at least 1 boy?