CHAPTER 3

Section 3.4

Permutations & Combinations

- What is a permutation?
 - An ordered arrangement of objects.
- *P*(*n*, *r*): the number of permutations of *r* distinct objects chosen from *n* distinct objects
- Formula: $P(n,r) = \frac{n!}{(n-r)!}$
- Example: Last 4 digits of a telephone number. Choose with no repeating digits.

Examples

- Example 47
 - What is the number of permutations of 3 objects: a, b, and c?
 - List the permutations.

• Example 49

- Ten athletes compete in an Olympic event. Gold, silver, and bronze medals are awarded.
- In how many ways can the awards be made?

Problems

- Problem 6
 - In how many ways can six people be seated in a circle of six chairs? Only relative positions in the circle can be distinguished.
- Problem 10
 - In how many different ways can you seat 11 men and 8 women in a row if the men all sit together and the women all sit together?

Combinations

- What is a combination?
 - A group of *r* objects chosen from a set of *n* objects.
 - Order doesn't matter.
- C(n,r) = The number of combinations of r distinct objects chosen from n distinct objects.
- Note $C(n,r) \cdot r! = P(n,r)$
- Formula $(0 \le r \le n)$

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Examples

- Example 54
 - Ten athletes compete in an Olympic event; three will be declared winners. In how many ways can the winners be chosen?
- Practice 32
 - In how many ways can a committee of 3 be chosen from a group of 12 people?

Example

- Example 55: A committee of 8 students is to be selected from a class consisting of 19 freshman and 34 sophomores.
 - a. In how many ways can 3 freshmen and 5 sophomores be selected?
 - b. In how many ways can a committee with exactly 1 freshman be selected?
 - c. In how many ways can a committee with at most 1 freshman be selected?
 - d. In how many ways can a committee with at least 1 freshman be selected?

Problems

- Problem 22
 - Of a company's personnel, 7 work in design, 14 in manufacturing, 4 in testing, 5 in sales, 2 in accounting, and 3 in marketing.
 - A committee of 6 people is to be formed to meet with upper management.
 - In how many ways can the committee be formed
 - if there are no restrictions on membership?
 - if there are exactly 2 members from manufacturing?

Eliminating Duplicates

- Be careful not to count something twice.
- Practice 33
 - A committee of 2 to be chosen from 4 math majors and 3 physics majors must include at least one math major. Compute the following 2 values:
 - C(4,1) · C(6,1)
 - C(7,2) C(3,2)
 - Which is the correct answer?

No Repetition

- So far, we've only looked at permutations and combinations without repetitions
 - Example: All strings that can be made using the alphabet $\{p, q, r\}$
 - No repetitions allowed
 - The longest string possible is only 3 characters long
 - pqr, prq, qpr, qrp, rpq, rqp

No Repetitions

- Not allowing repetitions results in the restriction $r \le n$.
- In other words, without repetitions, the most we can choose is *n* objects out of *n* objects.
 - If we choose more than *n*, at least one object will have to be repeated.

Repetitions Allowed

- Allowing repetitions allows r to be greater than n
 - Given our same alphabet $\{p, q, r\}$
 - Choose a string of length 5 built with the alphabet
 - Examples: *pqrpq*, *qqqqq*, *pqrqr*, *prrpq*, etc.
 - How many different strings can be built?
 - $3 \cdot 3 \cdot 3 \cdot 3 \cdot 3 = 3^5$

Repetitions

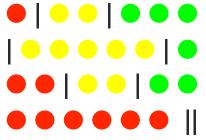
- Permutations
 - Choose r objects (as opposed to r distinct objects) out of n distinct objects
 - *n* choices for the first object
 - *n* choices for the second object (because repetitions allowed)
 - *n* choices for the *r*th object
 - The total number of permutations is *n^r* (multiplication principle).

Repetitions Allowed

- Combinations with repetitions allowed
 - Practice 35
 - Six children choose one lollipop each from among a selection of red, yellow, and green lollipops.
 - In how many ways can this be done? (We do not care which child gets which.)
 - What is *r*? What is *n*?

Practice 35

Examples



- For 3 colors/flavors, how many dividers are there?
- We have 8 slots into which we can insert either a divider or a lollipop.
 - · We are choosing which 6 slots should have a lollipop,
 - Or, which 2 slots should have a divider.

Combinations with Repetitions

• The general formula is

$$C(r+n-1,r) = \frac{(r+n-1)!}{r!(n-1)!}$$

Generating Algorithms

- Generating possible permutations and combinations
 - Algorithms exist, some of which use lexicographical ordering, others don't
 - You can examine the algorithms yourself.