CHAPTER 3

Section 3.1

Section 3.1: Sets

- A set is a collection of objects.
 - Usually share some common property P
 - An object with this common property is a member of the set.
 - An object without this common property is not a member of the set.
- What are some examples of sets?
 - Set of students taking CS214-01
 - Set of all positive even integers

- Capital letters denote sets, *A*, *B*, *C*, etc.
- $\bullet \in$ denotes membership in a set
 - *x* ∈ *C* means the object *x* is a member, or element, of the set *C*
- ∉ denotes lack of membership in a set
 - $b \notin C$ means the object b is not a member of the set C
- Braces are used to indicate a set
 - A = {violet, chartreuse, burnt umber}
 - violet $\in A$, magenta $\notin A$

- Order is not important in a set.
 - The set {1, 3, 5} is the same as {3, 1, 5}.
- Each element of the set is listed only once.
 - {1, 3, 3, 5} is not correct form.
- Two sets are equal if and only if they contain the same members.
 - $\{a, b, c\} = \{c, b, a\}$
 - $\bullet \left\{ a,b\right\} \neq \left\{ a,b,c\right\}$
 - $A = B \text{ means } (\forall x)[(x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)]$

- Identifying elements in a set
 - Finite set: one with *n* elements for some nonnegative integer *n*
 - List the elements.
 - *R* = {red, orange, yellow, green, blue, violet}
- Infinite set: infinite number of elements
 - List the elements
 - *S* = {2, 4, 6, 8, 10, 12, ...}
 - Describe the characterizing property of set \boldsymbol{S}
 - $S = \{x \mid x \text{ is a positive even integer}\}$
 - "The set of all x such that x is a positive even integer."

- In general, notation for a set having the characterizing property *P* is {*x* | *P*(*x*)}
 - Every member of the set must have the property P.
 - Everything that has the property *P* must be a member of the set.
- Practice 1: List the elements of the following sets.
 - a. $\{x \mid x \text{ is an integer and } 3 < x \le 7\}$
 - b. $\{x \mid x \text{ is a month with exactly 30 days}\}$
 - c. $\{x \mid x \text{ is the capital of the United States}\}$

Set Practice

- Practice 2: Describe each of the following sets by giving a characterizing property.
 - a. {1, 4, 9, 16}

b. {2, 3, 5, 7, 11, 13, 17, ...}

Standard Sets

- \mathbb{N} = set of all nonnegative integers ($0 \in \mathbb{N}$)
- \mathbb{Z} = set of all integers
- Q = set of all rational numbers
- R = set of all real numbers
- \mathbb{C} = set of all complex numbers
- Empty Set (or null set) is the set with no elements denoted by Ø or { }
 - What is {∅}?

Set Example

• Example 2: List the elements in the following sets $A = \{x \mid (\exists y) (y \in \{0, 1, 2\} \text{ and } x = y^3)\}$

$$B = \{x \mid x \in \mathbb{N} \text{ and } (\exists y) (y \in \mathbb{N} \text{ and } x \le y)\}$$

$$C = \{x \mid x \in \mathbb{N} \text{ and } (\forall y)(y \in \mathbb{N} \to x \le y)\}$$

Set Practice

Practice 3: Describe each set

a. $A = \{x \mid x \in \mathbb{N} \text{ and } (\forall y) (y \in \{2, 3, 4, 5\} \rightarrow x \ge y\}$

b. $B = \{x \mid (\exists y)(\exists z)(y \in \{1, 2\} \text{ and } z \in \{2, 3\} \text{ and } x = y+z)\}$

Subsets

- A \subseteq B means A is a subset of B
 - Every member of A is also a member of B.
 - Example:
 - $A = \{2, 3, 5, 12\}$ and $B = \{2, 3, 4, 5, 9, 12\}$
 - Formally, A is a subset of B if
 - $(\forall x)(x \in A \rightarrow x \in B)$
- A \subset B means A is a proper subset of B
 - $A \subseteq B$ and $A \neq B$
 - In the example above, is A a proper subset of B?

Subset Practice

- Practice 6: Let
 - $A = \{x \mid x \in \mathbb{N} \text{ and } x \ge 5\}$
 - $B = \{10, 12, 16, 20\}$
 - $C = \{x \mid (\exists y) (y \in \mathbb{N} \text{ and } x = 2y\}$
- Which of the following statements are true?

```
B \subseteq C\{12\} \in BB \subset A\{12\} \subseteq BA \subseteq C\{x \mid x \in \mathbb{N} \text{ and } x < 20\} \text{ not } \subseteq B26 \in C5 \subseteq A\{11, 12, 13\} \subseteq A\{\varnothing\} \subseteq B\{11, 12, 13\} \subset C\emptyset \in A\emptyset \subseteq A
```

Practice

- Can also have things like
 - $A = \{a, \{b\}, \{a, b\}, \{\{a\}\}, b\}\}$
 - How many elements does *A* have?
 - This is called the **cardinality** of *A*.
 - Is $\{a\} \in A$?

Set of Sets

- Power set of a set S is a new set D (S) whose elements are all of the subsets of S
 - *S*={0, 1}
 - $\wp(S) = \{ \emptyset, \{0\}, \{1\}, \{0,1\} \}$
 - Note that the members of a power set are sets.
 - How many members are in the power set for a set with *n* members?

Problem #12

• Let

- R = {1, 3, π, 4.1, 9, 10}
- S = { {1}, 3, 9, 10}
- T = {1, 3, π}
- U = { {1, 3, π}, 1}
- Which of the following are true?
 - a. S⊆R
 - b. $1 \in R$
 - c. 1∈S

- d. 1⊆U
- e. {1}⊆T
- $f. \quad \{1\} \subseteq S$
- g. $T \subset R$
- h. {1}∈S
- i. $\emptyset \subseteq S$
- j. T⊆U
- k. $T \in U$
- I. **T**∉**R**
- m. $T \subseteq R$
- n. $S \subseteq \{1, 3, 9, 10\}$

- An operation (○) is a binary operation on a set S
 if for every ordered pair (x, y) of elements of S
 - x

 y exists and is unique (i.e., the operation is well-defined), and
 - x

 y is a member of S (i.e., S is closed under the operation).
- An ordered pair of numbers is of the form (u, v)
 - Note that (1, 3) is not equal to (3, 1)
 - Two ordered pairs (u, v) and (x, y) are equal only when u=x and v=y

- The symbol o is a placeholder for an operation.
 It should be replaced by the appropriate operation, e.g,
- Example 7: Addition, subtraction and multiplication are all binary operations on \mathbb{Z} .
 - Think about addition.
 - Add any 2 numbers from $\mathbb Z.$ The result is a number in $\mathbb Z.$
 - Same for subtraction and addition.
 - Why is division not a binary operation on \mathbb{Z} ?
- Is addition a binary operation on \mathbb{N} ?
 - Multiplication? Subtraction?

- - 1. There are elements $x, y \in S$ for which $x \circ y$ does not exist.
 - 2. There are elements $x, y \in S$ for which $x \circ y$ gives more than one result.
 - 3. There are elements $x, y \in S$ for which $x \circ y$ does not belong to *S*.

- For # to be a unary operation on a set S, it must be true that for any x ∈ S,
 - $x^{\#}$ is well-defined, and
 - S is closed under #.
- Example 12: Let x[#] be defined by x[#] = -x, so that x[#] is the negative of x.
 - Is # a unary operation on \mathbb{Z} ?
 - Is # a unary operation on \mathbb{N} ?

Operations

Practice 12

- Which of the following are neither binary nor unary operations on the given set? Why not?
 - a. $x \circ y = x \div y$; S = set of all positive integers.
 - b. $x \circ y = x \div y$; S = set of all positive rational numbers.

c.
$$x \circ y = x^y$$
; $S = \mathbb{R}$

d. $x \circ y$ = maximum of x and y; $S = \mathbb{N}$

- Given a finite set $S = \{x_1, x_2, ..., x_n\}$
 - A binary operation on S can be defined by an array, or table, where element *i*, *j* (*i*th row and *j*th column) denotes x_i o x_j.
- Example 14: Let $S = \{2, 5, 9\}$ and let \circ be defined by the array
 - 2 o 5 = 2
 - 9 · 2 = 5
 - Is \circ a binary operation on *S*?

0	2	5	9
2	2	2	9
5	5	9	2
9	5	5	9

Operations on Sets

- We can define operations that operate on sets themselves, not just the members of sets
- Given an arbitrary set *S*, we can define some binary and unary operations on the set $\wp(S)$.
 - *S* in this case is called the universal set, or the universe of discourse
 - The universal set is the set of all objects under consideration.
 - We want to use subsets from this universal set and perform operations on those subsets.
 - If $S = \mathbb{Z}$, for example, then all subsets will contain only integers.

Operations on Sets

- A binary operation on $\mathcal{D}(S)$ must act on any two subsets of *S* to produce a unique subset of *S*
 - Union operation
 - Let $A, B \in \mathcal{D}$ (S). The union of A and B, denoted by $A \cup B$, is $\{x \mid x \in A \text{ or } x \in B\}$

•
$$S = \mathbb{N}; A = \{1, 2\}; B = \{2, 3\}$$

- $A \cup B = \{1, 2, 3\}$
- Intersection operation
 - Let $A, B \in \mathcal{D}$ (S). The intersection of A and B, denoted by $A \cap B$, is $\{x \mid x \in A \text{ and } x \in B\}$
 - *S*, *A*, and *B* as defined above
 - $A \cap B = \{2\}$

Operations on Sets

- Example
 - S = the set of all students at UAH
 - Power set of S is various subsets of S, or various groups of students
 - *A* = the set of students taking CS214
 - B = the set of students taking CS221
 - Union of A and B
 - $A \cup B$ = the set of students taking either CS214 or CS221
 - Intersection of A and B
 - $A \cap B$ = the set of students taking both CS214 and CS221

More Set Operations

Complement

• For a set A in $\mathcal{D}(S)$, the complement of A, A', is $\{x \mid x \in S \text{ and } x \notin A\}$

Set difference

• For sets *A* and *B* in $\mathscr{D}(S)$, the set difference: $A - B = \{x \mid x \in A \text{ and } x \notin B\}$ $A - B = \{x \mid x \in A \text{ and } x \in B'\}$ $A - B = A \cap B'$

More Set Operations

Disjoint sets

- Two sets A and B such that $A \cap B = \emptyset$ are said to be disjoint.
- A B and B A are disjoint sets.

• $(A - B) \cap (B - A) = \emptyset$

Practice 16

Let
A = {1, 2, 3, 5, 10}
B = {2, 4, 7, 8, 9}
C = {5, 8, 10}

be subsets of S = $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$.

- Find
 - A ∪ B
 - A C
 - $B' \cap (A \cup C)$

Cartesian Product

- Let A and B be subsets of S.
 - The Cartesian product, or cross product, of *A* and *B*, denoted by *A* × *B*, is defined by

$$A \times B = \{ (x,y) \mid x \in A \text{ and } y \in B \}$$

• $A \times A = A^2$

• A^n is the set of all *n*-tuples $(x_1, x_2, ..., x_n)$ of elements of A

Practice 17

- Let $A = \{1, 2\}$ and $B = \{3, 4\}$
- Find $A \times B$, $B \times A$, A^2 and A^3 .

Basic Set Identities

Commutative Properties	1a. $A \cup B = B \cup A$ 1b. $A \cap B = B \cap A$
Associative Properties	2a. $(A \cup B) \cup C = A \cup (B \cup C)$ 2b. $(A \cap B) \cap C = A \cap (B \cap C)$
Distributive Properties	3a. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ 3b. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity Properties	4a. A $\cup \emptyset$ = A 4b. A \cap S = A
Complement Properties	5a. A \cup A' = S 5b. A \cap A' = \emptyset

Countable and Uncountable

- Finite sets
 - Elements in the set are
 - $s_1, s_2, s_3, s_4, \dots, s_k$
 - Where k is the cardinality of the set (number of elements)

Infinite set

- May be able to choose a first element, then a second, then a third, etc.
 - $s_1, s_2, s_3, s_4, \dots$
 - Eventually, we can get to any element in the set
- This type of infinite set is **denumerable**.

Countable and Uncountable

- Finite sets and denumerable infinite sets are countable.
- Example 21: The set \mathbb{N} is denumerable.
 - Show there is a counting scheme.
 - 0, 1, 2, 3, 4, ...
- Practice 20: The set of even positive integers is denumerable.
- Some infinite sets are uncountable
 - The set of all real numbers between 0 and 1