CHAPTER 2

Section 2.5

Summation Notation

- Appendix B talks about sums
- Σ stands for summation, or sum
- General notation for a sum is

$$\sum_{i=p}^{q} (expression)$$

Example

$$\sum_{i=1}^{n} (2i-1) = 1 + 3 + 5 + \dots + (2n-1)$$

More Sums

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{k} \frac{1}{2^{i}} = 2 - \frac{1}{2^{k}}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=0}^{k} i2^{i} = (k-1)2^{k+1} + 2$$

$$\sum_{i=0}^{k} a^{i} = \frac{a^{k+1} - 1}{a - 1}$$

Rules of Summation

$$\sum_{i=p}^{q} (a_i + b_i) = \sum_{i=p}^{q} a_i + \sum_{i=p}^{1} b_i$$

$$\sum_{i=p}^{q} (a_i - b_i) = \sum_{i=p}^{q} a_i - \sum_{i=p}^{1} b_i$$

$$\sum_{i=p}^{q} ca_i = c \sum_{i=p}^{q} a_i$$

, where c is a constant

§ 2.5: Recurrence Relations

- Recall the recursive definition for S(n)
 - 1. S(1) = 2
 - 2. S(n) = 2S(n-1) for $n \ge 2$
- We developed several algorithms for computing *S*(*n*)
- However, looking at the values in the sequence
 - 2, 4, 8, 16, 32, ...
 - 2¹, 2², 2³, 2⁴, 2⁵, ...
 - We can see that S(n) = 2ⁿ, which is a closed-form solution to the recurrence relation in (2) subject to the basis step.

Recurrence Relations

- Finding a closed-form solution to a recurrence relation is solving the recurrence relation.
 - Whenever possible we want to find a closed-form solution to a recurrence relation.
 - This section describes how to do so.

Expand, Guess, and Verify

- A technique for solving linear first-order recurrence relations.
 - Repeatedly use the recurrence relation to **expand** the expression for the *n*th term
 - Guess the general pattern
 - Verify the guess by mathematical induction

Example 42

- Same recurrence relation
 - S(1) = 2
 - S(n) = 2S(n-1) for $n \ge 1$
- Expand

$$S(n) = 2S(n-1)$$

= 2[2S(n-2)] = 2²S(n-2)
= 2[2[2S(n-3)]] = 2³S(n-3)

Example 42 continued

- Guess the closed-form based on the developing pattern $S(n) = 2^k S(n-k)$
 - Must stop when $S(n-k) = S(1) \Rightarrow n-k=1 \Rightarrow k=n-1$
- At that point (k=n-1) the formula is $S(n) = 2^{n-1}S(n-(n-1)) = 2^{n-1}S(n-n+1) = 2^{n-1}S(1)$ $= (2^{n-1})2 = (2^{n-1+1}) = 2^n$
 - This is our closed form solution

Example 42

Prove using mathematical induction

Practice 21

• Find a closed-form solution for the recurrence relation, subject to the basis step, for sequence *T*

T(1) = 1T(n) = T(n-1) + 3 for $n \ge 2$

Solution Formula

General linear recurrence relation has the form

 $S(n) = f_1(n)S(n-1) + f_2(n)S(n-2) + \dots + f_k(n)S(n-k) + g(n)$

- Where the f'_i s and g' s can be expression involving n.
- Recurrence relation has constant coefficients if the f_i's are all constants.
- It is **first-order** if the *n*th term depends only on term *n*-1
- Therefore, linear first-order recurrence relations with constant coefficients have the form

S(n) = cS(n-1) + g(n)

Solution Formula

 Linear first-order recurrence relations with constant coefficients have the form

S(n) = cS(n-1) + g(n)⁽¹⁾

• Which has the general solution

$$S(n) = c^{n-1}S(1) + \sum_{i=2}^{n} c^{n-i}g(i)$$

- To solve a recurrence relation of this form
 - Match the recurrence relation to formula (1)
 - Determine your values for c and g(n)
 - Substitute those values into the solution formula and solve

Practice 21

- Find a closed-form solution for the recurrence relation T(1) = 1
 - $T(n) = T(n-1) + 3 \text{ for } n \ge 2$
- Solution Formula method
- Alternate method
 - Set up the problem as a system of equations and add to solve

Example 42

Recurrence relation

S(1) = 2

S(n) = 2S(n-1) for $n \ge 1$

- Solution Formula method
- Alternate method

More Recurrence Relations

- Example 47: Solve the following recurrence relation
 - T(1) = 1 $T(n) = 2nT(n-1) + (n+1), \qquad n \ge 2$

Linear 2nd Order Recurrences

- The general form is $S(n) = c_1 S(n-1) + c_2 S(n-2)$
- The solution formula is

$$S(n) = pr_1^{n-1} + qr_2^{n-1}$$

• where r_1 and r_2 are two distinct roots of

$$t^2 - c_1 t - c_2 = 0$$

p and *q* must satisfy the two initial conditions
p + *q* = *S*(1)
*pr*₁ to *qr*₂ = *S*(2)

Log Function (Appendix C)

• $y = \log_b x$ means $b^y = x$

- Properties of the Logarithm Function $y = \log_b x$
 - 1. If p < q, then $\log_b p < \log_b q$

2. If
$$\log_b p = \log_b q$$
, then $p = q$

3. $\log_b 1 = 0$

4.
$$\log_b b = 1$$

5.
$$\log_b(b^p) = p$$

6.
$$\log_b(pq) = \log_b p + \log_b q$$

7.
$$\log_b(p/q) = \log_b p - \log_b q$$

- 8. $\log_b(p^q) = q(\log_b p)$
- 9. $\log_a p = \log_b p / \log_b a$

Divide and Conquer Recurrences

 Divide and conquer recurrence relations with constant coefficients have the form

S(n) = cS(n/2) + g(n), $n \ge 2$, $n=2^m$ (1)

• Which has the general solution $S(n) = c^{\log n} S(1) + \sum_{i=1}^{\log n} c^{(\log n) - i} g(2^{i})$

Divide and Conquer Recurrences

- Example 52: Solve the following recurrence relation
 - C(1) = 1 $C(n) = 1 + C(n/2), \quad n \ge 2, n=2^m$

Divide and Conquer Recurrences

- Problem 40: Solve the following recurrence relation
 - S(1) = 1 $S(n) = 2S(n/2) + n, \quad n \ge 2, n=2^{m}$