
CHAPTER 2
SECTION 2.4
9/11/2012

Recursive Definitions

¨  A recursive definition is one in which the item
being defined is included as part of the definition
¤ Also called an inductive definition

¨  2 parts to a recursive definition
 1. A basis, where some simple cases (1 or more) of
the item being defined are explicitly given

 2. A recursive or inductive step, where new cases of
the item being defined are given in terms of previous
cases

2

Recursively Defined Sequences

¨  Sequence S
¤ A list of objects that are enumerated in some order
¤  S(k) denotes the kth object in the sequence

¨  Defining a sequence recursively
¤ First, name one or more base cases
¤ Then, define later values in terms of earlier ones

¨  Example 29: Sequence S is defined recursively
by

 1. S(1) = 2
 2. S(n) = 2S(n-1) for n ≥ 2

3

Recursively Defined Sequences

¨  Fibonacci Sequence of Numbers
 F(1) = 1
 F(2) = 1
 F(n) = F(n-2) + F(n-1) for n > 2

¨  What is the basis?
¨  Write the first 10 values of the sequence.

4

Fibonacci Numbers

¨  Problem 14: Prove the given property of the
Fibonacci numbers directly from the definition.

 F(n+3) = 2F(n+1) + F(n) for n ≥ 1
¨  Recall that the definition (recursive part) is

 F(k) = F(k-2) + F(k-1)
¨  Since we’re trying to show a property F(n+3),

substitute n+3 into the definition for k (k=n+3).
 F(n+3) = F(n+3-2) + F(n+3-1) = F(n+1) + F(n+2)

5

Fibonacci Numbers

¨  Now, prove the same formula using the 2nd
principle of induction (Problem 20).
P(n): F(n + 3) = 2F(n + 1) + F(n) for n ≥ 1

¨  Step 1: Base Case
¤ Since we are using 2 previous values to compute

the next value, use 2 base cases

6

Problem 20 continued

¨  Step 2.a: Assume
 P(r): F(r+3) = 2F(r+1) + F(r) for 1 ≤ r ≤ k

¤ What does this mean? We can assume
n F(1+3) = 2F(1+1) + F(1) ⇒ F(4) = 2F(2) + F(1)
n F(2+3) = 2F(2+1) + F(2) ⇒ F(5) = 2F(3) + F(2)
n …
n F(k-1+3) = 2F(k-1+1) + F(k-1) ⇒

 F(k+2) = 2F(k) + F(k-1)
n F(k+3) = 2F(k+1) + F(k)

7

Problem 20 continued

¨  Step 2.b: Prove
 P(k+1): F(k+1+3) ?= 2F(k+1+1) + F(k+1)
 ⇒ F(k+4) ?= 2F(k+2) + F(k+1)

¤ Start with the definition of Fibonacci numbers
 F(n) = F(n-2) + F(n-1)

n Since we are trying to prove F(k+4), substitute k+4 for
n in the definition formula
 F(k+4) = F(k+4-2) + F(k+4-1) = F(k+2) + F(k+3)

n Now, do we have any information we can use about
F(k+2) and F(k+3)?

8

Fibonacci Sequence

¨  Example 31: Prove that in the Fibonacci
sequence

 F(n + 4) = 3F(n + 2) - F(n) for all n ≥ 1

¨  Proof by induction

9

Fibonacci Sequence

¨  Prove the formula without induction
 F(n + 4) = 3F(n + 2) - F(n) for all n ≥ 1

¨  Use the recurrence relation from the definition
of Fibonacci numbers

 F(n) = F(n - 2) + F(n - 1)

10

Recursively Defined Sets

¨  A sequence is a collection of objects which
have a specific order

¨  A set is a collection of object with no order
imposed

¨  Example: A recursive definition for the set of
propositional wffs

1.  Any statement letter is a wff.
2.  If P and Q are wffs, so are (P ∨ Q),

(P ∧ Q), (P → Q), (Pʹ′), and (P ↔ Q)
¨  Show how to build ((A ∨ (Bʹ′)) → C)

11

Recursively Defined Sets

¨  Example 34: The set of all (finite-length) strings
of symbols over a finite alphabet A is denoted
by A*. The recursive definition of A* is

 1. The empty string λ (the string with no symbols)
belongs to A*.

 2. Any single member of A belongs to A*.
 3. If x and y are strings in A*, so is xy, the
concatenation of strings x and y.

¨  If x = 1011 and y = 001, write the strings xy, yx,
and yxλx.

12

Recursively Defined Set

¨  Practice 17
¤ Give a recursive definition for the set of all binary

strings that are palindromes.
n A palindrome is a string that reads the same forwards

and backwards.

13

Backus-Naur Form

¨  BNF notation allows you to recursively define
a set of strings
¤ Angle brackets < > indicate items that are defined

in terms of other items
¤  Items without brackets cannot be further broken

down
¤ The vertical line | means or

14

Backus-Naur Form

¨  A BNF definition of an identifier
 <identifier> ::= <letter> | <identifier><letter>

 | <identifier><digit>
 <letter> ::= a | b | c | ... | z
 <digit> ::= 1 | 2 | ... | 9

¨  How would the identifier tmp1 be built from the
definition?

15

Recursively Defined Operations

¨  Some operations can also be defined
recursively
¤ Example 36: Exponentiation operation an on a

nonzero real number a, where n is a nonnegative
integer

¤ Recursive definition
 1. a0 = 1
 2. an = (an-1)a for n ≥ 1

16

Recursively Defined Operations

¨  Practice 18
¤ Let x be a string over some alphabet
¤ Give a recursive definition for the operation xn

(concatenation of x with itself n times) for
n ≥ 1.

17

Recursively Defined Algorithms

¨  Write a computer algorithm to calculate S(n)
from Example 29

 1. S(1) = 2
 2. S(n) = 2S(n-1) for n ≥ 2

¨  Iterative vs. recursive

18

Binary Search

¨  Input
¤  List of items sorted in nondecreasing order
¤ An item x which you would like to find

¨  Basic Idea
¤ Compare x to the middle item in list
¤  If it matches, you’re done.
¤  If x is less than middle item

n  Search first half of list

¤  If x is greater than middle item
n  Search second half of list

19

Binary Search Algorithm
BinarySearch(list L; integer i; integer j; itemtype x)
// searches sorted list L from L[i] to L[j] for item x

 if (i > j) then
 write (“not found”)
 else
 find the index k of the middle item in the list L[i]-L[j]
 if x = middle item then
 write(“found”)
 else
 if x < middle item then
 BinarySearch(L, I, k-1, x)
 else
 BinarySearch(L, k+1, j, x)
 end if
 end if
 end if

end function BinarySearch

20

Binary Search

¨  Apply the binary search algorithm to the list
 3, 7, 8, 10, 14, 18, 22, 34

21

