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Recursive Definitions 

¨  A recursive definition is one in which the item 
being defined is included as part of the definition 
¤ Also called an inductive definition 

¨  2 parts to a recursive definition 
 1.  A basis, where some simple cases (1 or more) of 
the item being defined are explicitly given 

 2. A recursive or inductive step, where new cases of 
the item being defined are given in terms of previous 
cases 
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Recursively Defined Sequences 

¨  Sequence S 
¤ A list of objects that are enumerated in some order 
¤  S(k) denotes the kth object in the sequence 

¨  Defining a sequence recursively 
¤ First, name one or more base cases 
¤ Then, define later values in terms of earlier ones 

¨  Example 29: Sequence S is defined recursively 
by 

 1. S(1) = 2 
 2. S(n) = 2S(n-1) for n ≥ 2 
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Recursively Defined Sequences 

¨  Fibonacci Sequence of Numbers 
 F(1) = 1 
 F(2) = 1 
 F(n) = F(n-2) + F(n-1)  for n > 2 

¨  What is the basis? 
¨  Write the first 10 values of the sequence. 
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Fibonacci Numbers 

¨  Problem 14:  Prove the given property of the 
Fibonacci numbers directly from the definition. 

 F(n+3) = 2F(n+1) + F(n) for n ≥ 1 
¨  Recall that the definition (recursive part) is 

 F(k) = F(k-2) + F(k-1) 
¨  Since we’re trying to show a property F(n+3), 

substitute n+3 into the definition for k (k=n+3). 
 F(n+3) = F(n+3-2) + F(n+3-1) = F(n+1) + F(n+2) 
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Fibonacci Numbers 

¨  Now, prove the same formula using the 2nd 
principle of induction (Problem 20). 
P(n): F(n + 3) = 2F(n + 1) + F(n) for n ≥ 1 

¨  Step 1:  Base Case 
¤ Since we are using 2 previous values to compute 

the next value, use 2 base cases 
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Problem 20 continued 

¨  Step 2.a: Assume 
 P(r): F(r+3) = 2F(r+1) + F(r) for 1 ≤ r ≤ k 

¤ What does this mean?  We can assume 
n F(1+3) = 2F(1+1) + F(1) ⇒ F(4) = 2F(2) + F(1) 
n F(2+3) = 2F(2+1) + F(2) ⇒ F(5) = 2F(3) + F(2) 
n … 
n F(k-1+3) = 2F(k-1+1) + F(k-1) ⇒  

   F(k+2) = 2F(k) + F(k-1) 
n F(k+3) = 2F(k+1) + F(k) 
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Problem 20 continued 

¨  Step 2.b: Prove 
 P(k+1): F(k+1+3) ?= 2F(k+1+1) + F(k+1) 
       ⇒ F(k+4) ?= 2F(k+2) + F(k+1) 

¤ Start with the definition of Fibonacci numbers 
 F(n) = F(n-2) + F(n-1) 

n Since we are trying to prove F(k+4), substitute k+4 for 
n in the definition formula 
 F(k+4) = F(k+4-2) + F(k+4-1) = F(k+2) + F(k+3)  

n Now, do we have any information we can use about  
F(k+2) and F(k+3)? 
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Fibonacci Sequence 

¨  Example 31: Prove that in the Fibonacci 
sequence 

 F(n + 4) = 3F(n + 2) - F(n)  for all n ≥ 1 

¨  Proof by induction 
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Fibonacci Sequence 

¨  Prove the formula without induction 
 F(n + 4) = 3F(n + 2) - F(n)  for all n ≥ 1 

¨  Use the recurrence relation from the definition 
of Fibonacci numbers 

 F(n) = F(n - 2) + F(n - 1) 
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Recursively Defined Sets 

¨  A sequence is a collection of objects which 
have a specific order 

¨  A set is a collection of object with no order 
imposed 

¨  Example: A recursive definition for the set of 
propositional wffs 

1.  Any statement letter is a wff. 
2.  If P and Q are wffs, so are (P ∨ Q),  

(P ∧ Q), (P → Q), (Pʹ′), and (P ↔ Q) 
¨  Show how to build ((A ∨ (Bʹ′)) → C) 
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Recursively Defined Sets 

¨  Example 34: The set of all (finite-length) strings 
of symbols over a finite alphabet A is denoted 
by A*. The recursive definition of A* is 

 1. The empty string λ (the string with no symbols) 
belongs to A*. 

 2. Any single member of A belongs to A*. 
 3. If x and y are strings in A*, so is xy, the 
concatenation of strings x and y. 

¨  If x = 1011 and y = 001, write the strings xy, yx, 
and yxλx. 
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Recursively Defined Set 

¨  Practice 17 
¤ Give a recursive definition for the set of all binary 

strings that are palindromes. 
n A palindrome is a string that reads the same forwards 

and backwards. 
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Backus-Naur Form 

¨  BNF notation allows you to recursively define 
a set of strings 
¤ Angle brackets < > indicate items that are defined 

in terms of other items 
¤  Items without brackets cannot be further broken 

down  
¤ The vertical line | means or 
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Backus-Naur Form 

¨  A BNF definition of an identifier 
 <identifier> ::= <letter> | <identifier><letter>  

   | <identifier><digit> 
 <letter> ::= a | b | c | ... | z 
 <digit> ::= 1 | 2 | ... | 9 

¨  How would the identifier tmp1 be built from the 
definition? 
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Recursively Defined Operations 

¨  Some operations can also be defined 
recursively 
¤ Example 36:  Exponentiation operation an on a 

nonzero real number a, where n is a nonnegative 
integer 

¤ Recursive definition 
 1. a0 = 1 
 2. an = (an-1)a  for n ≥ 1 
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Recursively Defined Operations 

¨  Practice 18 
¤ Let x be a string over some alphabet 
¤ Give a recursive definition for the operation xn 

(concatenation of x with itself n times) for  
n ≥ 1. 
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Recursively Defined Algorithms 

¨  Write a computer algorithm to calculate S(n) 
from Example 29 

 1. S(1) = 2 
 2. S(n) = 2S(n-1)  for n ≥ 2 

¨  Iterative vs. recursive 
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Binary Search 

¨  Input 
¤  List of items sorted in nondecreasing order 
¤ An item x which you would like to find 

¨  Basic Idea 
¤ Compare x to the middle item in list 
¤  If it matches, you’re done. 
¤  If x is less than middle item 

n  Search first half of list 

¤  If x is greater than middle item 
n  Search second half of list 
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Binary Search Algorithm 
BinarySearch(list L; integer i; integer j; itemtype x) 
// searches sorted list L from L[i] to L[j] for item x 

 if (i > j) then 
  write (“not found”) 
 else 
  find the index k of the middle item in the list L[i]-L[j] 
  if x = middle item then 
   write(“found”) 
  else 
   if x < middle item then 
    BinarySearch(L, I, k-1, x) 
   else 
    BinarySearch(L, k+1, j, x) 
   end if 
  end if 
 end if 

end function BinarySearch 
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Binary Search 

¨  Apply the binary search algorithm to the list 
 3, 7, 8, 10, 14, 18, 22, 34 
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