CHAPTER 2

Section 2.4

Recursive Definitions

- A recursive definition is one in which the item being defined is included as part of the definition
 - Also called an inductive definition
- 2 parts to a recursive definition
 - 1. A basis, where some simple cases (1 or more) of the item being defined are explicitly given
 - 2. A recursive or inductive step, where new cases of the item being defined are given in terms of previous cases

Recursively Defined Sequences

- Sequence S
 - A list of objects that are enumerated in some order
 - S(k) denotes the k^{th} object in the sequence
- Defining a sequence recursively
 - First, name one or more base cases
 - Then, define later values in terms of earlier ones
- Example 29: Sequence S is defined recursively by
 - 1. S(1) = 2
 - 2. S(n) = 2S(n-1) for $n \ge 2$

Recursively Defined Sequences

Fibonacci Sequence of Numbers

$$F(1) = 1$$

 $F(2) = 1$
 $F(n) = F(n-2) + F(n-1)$ for $n > 2$

- What is the basis?
- Write the first 10 values of the sequence.

Fibonacci Numbers

 Problem 14: Prove the given property of the Fibonacci numbers directly from the definition.

$$F(n+3) = 2F(n+1) + F(n)$$
 for $n \ge 1$

- Recall that the definition (recursive part) is F(k) = F(k-2) + F(k-1)
- Since we're trying to show a property F(n+3), substitute n+3 into the definition for k (k=n+3).

$$F(n+3) = F(n+3-2) + F(n+3-1) = F(n+1) + F(n+2)$$

Fibonacci Numbers

 Now, prove the same formula using the 2nd principle of induction (Problem 20).

$$P(n)$$
: $F(n + 3) = 2F(n + 1) + F(n)$ for $n \ge 1$

- Step 1: Base Case
 - Since we are using 2 previous values to compute the next value, use 2 base cases

Problem 20 continued

Step 2.a: Assume

$$P(r)$$
: $F(r+3) = 2F(r+1) + F(r)$ for $1 \le r \le k$

What does this mean? We can assume

•
$$F(1+3) = 2F(1+1) + F(1) \Rightarrow F(4) = 2F(2) + F(1)$$

•
$$F(2+3) = 2F(2+1) + F(2) \Rightarrow F(5) = 2F(3) + F(2)$$

• ...

•
$$F(k-1+3) = 2F(k-1+1) + F(k-1) \Rightarrow$$

 $F(k+2) = 2F(k) + F(k-1)$

• F(k+3) = 2F(k+1) + F(k)

Problem 20 continued

Step 2.b: Prove

$$P(k+1)$$
: $F(k+1+3) ?= 2F(k+1+1) + F(k+1)$
 $\Rightarrow F(k+4) ?= 2F(k+2) + F(k+1)$

Start with the definition of Fibonacci numbers

$$F(n) = F(n-2) + F(n-1)$$

• Since we are trying to prove F(k+4), substitute k+4 for n in the definition formula

$$F(k+4) = F(k+4-2) + F(k+4-1) = F(k+2) + F(k+3)$$

• Now, do we have any information we can use about F(k+2) and F(k+3)?

Fibonacci Sequence

Example 31: Prove that in the Fibonacci sequence

$$F(n + 4) = 3F(n + 2) - F(n)$$
 for all $n \ge 1$

Proof by induction

Fibonacci Sequence

Prove the formula without induction

$$F(n + 4) = 3F(n + 2) - F(n)$$
 for all $n \ge 1$

 Use the recurrence relation from the definition of Fibonacci numbers

$$F(n) = F(n-2) + F(n-1)$$

Recursively Defined Sets

- A sequence is a collection of objects which have a specific order
- A set is a collection of object with no order imposed
- Example: A recursive definition for the set of propositional wffs
 - Any statement letter is a wff.
 - 2. If P and Q are wffs, so are $(P \lor Q)$, $(P \land Q)$, $(P \rightarrow Q)$, (P'), and $(P \leftrightarrow Q)$
- Show how to build $((A \lor (B')) \rightarrow C)$

Recursively Defined Sets

- Example 34: The set of all (finite-length) strings of symbols over a finite alphabet A is denoted by A*. The recursive definition of A* is
 - 1. The empty string λ (the string with no symbols) belongs to A^* .
 - 2. Any single member of A belongs to A*.
 - 3. If x and y are strings in A^* , so is xy, the concatenation of strings x and y.
- If x = 1011 and y = 001, write the strings xy, yx, and $yx\lambda x$.

Recursively Defined Set

- Practice 17
 - Give a recursive definition for the set of all binary strings that are palindromes.
 - A palindrome is a string that reads the same forwards and backwards.

Backus-Naur Form

- BNF notation allows you to recursively define a set of strings
 - Angle brackets < > indicate items that are defined in terms of other items
 - Items without brackets cannot be further broken down
 - The vertical line | means or

Backus-Naur Form

A BNF definition of an identifier

```
<identifier> ::= <letter> | <identifier> <letter> |<identifier> <digit> <letter> ::= a | b | c | ... | z  <letter> ::= 1 | 2 | ... | 9
```

How would the identifier tmp1 be built from the definition?

Recursively Defined Operations

- Some operations can also be defined recursively
 - Example 36: Exponentiation operation a^n on a nonzero real number a, where n is a nonnegative integer
 - Recursive definition

1.
$$a^0 = 1$$

2.
$$a^n = (a^{n-1})a$$
 for $n \ge 1$

Recursively Defined Operations

- Practice 18
 - Let x be a string over some alphabet
 - Give a recursive definition for the operation x^n (concatenation of x with itself n times) for $n \ge 1$.

Recursively Defined Algorithms

Write a computer algorithm to calculate S(n) from Example
 29

```
1. S(1) = 2
2. S(n) = 2S(n-1) for n \ge 2
```

Iterative vs. recursive

Binary Search

- Input
 - List of items sorted in nondecreasing order
 - An item x which you would like to find
- Basic Idea
 - Compare x to the middle item in list
 - If it matches, you're done.
 - If x is less than middle item
 - Search first half of list
 - If x is greater than middle item
 - Search second half of list

Binary Search Algorithm

```
BinarySearch(list L; integer i; integer j; itemtype x)
// searches sorted list L from L[i] to L[i] for item x
  if (i > j) then
      write ("not found")
  else
      find the index k of the middle item in the list L[i]-L[j]
      if x = middle item then
                write("found")
      else
                if x < middle item then
                          BinarySearch(L, I, k-1, x)
                else
                          BinarySearch(L, k+1, j, x)
                end if
      end if
  end if
end function BinarySearch
```

Binary Search

• Apply the binary search algorithm to the list 3, 7, 8, 10, 14, 18, 22, 34