
Chapter 1
Introduction to Computers, the Internet and the Web

Computer Basics
�  A computer consists of hardware and software

�  Computer Hardware
�  Physical components of a computer

�  Processing unit, keyboard, monitor/screen, mouse,
hard disk, memory, DVD drive, etc.

�  Computer Software
�  The instructions you write to command computers to

perform actions and make decisions

2

Computer Organization
�  Computer hardware can be divided into various

logical units or sections
�  Input Unit

�  Output Unit
�  Central Processing Unit (CPU)

�  Arithmetic logic unit (ALU)

�  Memory Unit

�  Secondary Storage Unit

3

Computer Organization
�  Input Unit

�  Obtains information from the outside world through
input devices
�  Places that information at the disposal of the other units

for processing.

�  Examples of input devices
�  Keyboard, touch screen, mouse/touch pad, joystick

�  Microphones, scanners, cameras, bar code reader

�  GPS device, accelerometer

4

Computer Organization
�  Output unit

�  Takes information the computer has processed and
places it on various output devices to make it
available for use outside the computer

�  Examples of output devices
�  Printer, plotter, screen, speaker, projector

�  Robot, “intelligent” appliance

5

Computer Organization
�  Central processing unit (CPU)

�  The brain of the computer

�  Coordinates and supervises the operation of the other
sections

�  Consists of
�  Arithmetic logic unit (ALU)

�  Registers (memory)

�  Control unit (CU)

�  Many of todays computers have multi-core
processors
�  Multiple CPUs on a single integrated-circuit chip

6

Computer Organization
�  Arithmetic logic unit (ALU)

�  Performs math operations (addition, subtraction,
multiplication, division, etc.) and logic operations (AND,
OR, NOT, etc.)

�  Registers
�  Used for fast access of data by other CPU components

�  Control unit (CU)
�  Controls the other parts of the CPU in order to execute

instructions
�  Fetches instructions and data from main memory
�  Uses the ALU and registers to execute the instructions
�  Called a fetch-execute cycle

7

Computer Organization
�  Memory unit (also called main or primary memory)

�  Rapid-access, relatively low-capacity “warehouse”
section that is used to store computer instructions
and computer information or data
�  Each location in memory has an address, so data in a

particular location can be accessed

�  Data in memory is volatile
�  RAM (Random access memory)

8

Computer Organization
�  Secondary Storage Unit

�  Long-term, high-capacity “warehousing” section

�  Examples of secondary storage devices
�  Hard drive, DVD drive, USB flash drive

�  Storage capacity usually expressed in terms of GB or TB

�  Data on secondary storage devices is persistent

�  Cheaper, but takes much longer for the computer to
access than main memory

�  Input/output and secondary storage devices are also
called peripherals

9

Computer Software
�  The programs that allow the computer hardware to

operate

�  Computer program: A set of instructions for the
computer to perform

�  Two types of software
�  System software

�  Operating systems, utilities, language translators
(assembler, compiler, interpreter)

�  Application software
�  Word processors, database management systems

(DBMSs), graphics programs, games, payroll systems,
etc.

10

Bits and Bytes
�  Data and instructions – everything on a computer – is stored

in memory in bits, or binary digits

�  Bit – the smallest data item in a computer

�  Can be in one of two states (1 or 0)

�  8 bits is called a byte

�  4 bits is called a nibble (or nybble)

�  Bytes can be combined to form words

�  The length of a word is system dependent

11

Bits and Bytes
�  Letters, characters, numbers, instructions, etc., can all be

represented by a combination of 0s and 1s.

�  For example, the letter F can be represented by 01000110, which
is the number 70 in decimal (base 10)

�  This representation is based on ASCII (American Standard Code
for Information Interchange) format

�  Each letter, number, or character is represented using 1 byte

�  See Appendix B for the ASCII character set

12

Bits and Bytes
�  Unicode is another character coding system

�  Universal Character Encoding

�  Assigns a unique number to every character of every written
language

�  Length depends on the specific encoding used

�  UTF-8 uses one byte for any ASCII character (same values) and
up to 4 bytes for other characters

13

C Programming Language
�  Developed by Dennis Ritchie at Bell Laboratories

�  Originally implemented in 1972

�  Evolved from B
�  B was developed and used by Ken Thompson to create

early versions of the UNIX operation system

�  Many of today’s leading operating systems are
written in C and/or C++

�  C is mostly hardware independent
�  With careful design, it’s possible to write C programs

that are portable to most computers

14

C Programming Language
�  C was built for systems that demand performance

�  Operating systems, embedded systems, real-time
systems, and communication systems

�  C remains the most widely used embedded
programming language

�  C is a high-level language
�  The 3 language types are machine, assembly, and

high-level

�  C is a compiled language
�  A compiler converts the source code into machine

language

15

C Development Process
�  Phases of development:

�  Edit: Programmer writes source code in an editor (.c)

�  Preprocess: Preprocessor processes the source code

�  Compile: Compiler translates the pre-processed source
code into object code (.obj) – machine language

�  Link: Linker links the object code with libraries and creates
an executable file (.exe)

�  Phases of execution:
�  Load: The loader moves the executable program from

secondary storage into memory

�  Execute: The CPU takes each instruction and executes it

16

C Programming Language
�  “Writing in C or C++ is like running a chain saw

with all the safety guards removed.”
(Bob Gray)

17

Chapter 2
Introduction to C Programming

A Simple C Program

#include <stdio.h>

int main(void)

{

 printf(“Hello, world!”);

 return 0;

}

19

#include <stdio.h>
int main(void)

{

 printf(“Hello, world!”);

 return 0;

}

�  Preprocessor directive
�  Tells the compiler your program uses a function

defined in the header file stdio.h

�  The preprocessor takes the appropriate code from
stdio.h and combines it with your program, which is
sent to the compiler

�  Preprocessor directives always start with #

20

#include <stdio.h>
int main(void)
{

 printf(“Hello, world!”);
 return 0;

}

�  Preprocessor directive

�  stdio.h is a built-in header file, which provides standard
input/output functions

�  For built-in C header files, use < > around the name of the
file

�  If you try to use printf in a program without the
#include <stdio.h> statement, you will get a compiler
error

21

#include <stdio.h>

int main(void)
{

 printf(“Hello, world!”);

 return 0;

}

�  Function declaration

�  Every C program must have a main function

�  Note: C is case sensitive

�  int Main(void) will not work!

22

#include <stdio.h>

int main(void)

{

 printf(“Hello, world!”);

 return 0;

}

�  Pairs of opening and closing braces are used to
signal where a block of code (such as a function)
begins and ends

�  Every opening brace { must have a corresponding
closing brace } or you will get a compiler error

23

#include <stdio.h>

int main(void)

{

 printf(“Hello, world!”);
 return 0;

}

�  This is a C statement
�  A C program is a series of C statements
�  Every C statement ends in a semi-colon ;
�  The printf(“Hello, world!”); statement is a

function call
�  printf is used to print information to the screen

24

#include <stdio.h>

int main(void)

{

 printf(“Hello, world!”);

 return 0;

}

�  return 0; is a C statement
�  Used to indicate our main function completed

execution with no problem

�  What is the output of the program?

25

Printing to the screen
�  The printf function is used in C to print text to the

screen

�  Simplest form of printf
 printf(string);

�  string is any text you would like to print

�  Text must be in double quotes

�  Example
 printf(“C programming is fun!”);

26

Printing to the screen
�  Each printf statement does not automatically advance

to a new line
�  You must explicitly tell the program when you want to move

to a new line in the output
�  For example, what is the output of the following program?

 #include <stdio.h>
 int main(void)
 {
 printf(“Hello!”);
 printf(“Goodbye!”);
 return 0;
 }

27

Printing to the screen
�  To move to a new line when printing:

�  Use the escape sequence \n inside the double quotes

�  Modify program to print a new line between Hello!
and Goodbye!

 #include <stdio.h>
 int main(void)
 {
 printf(“Hello!\n”);
 printf(“Goodbye!”);
 return 0;
 }

28

Escape Sequences
�  Whenever a backslash (\) is encountered in a
printf statement, it indicates the character
following the \ has a special meaning.

�  Commonly used escape sequences

29

Escape Sequence Meaning

\n Advance to a new line

\a Beep

\t Print a tab

\\ Print a single backslash

%% Print a percent sign

Escape Sequences
�  So, what if you want to print a \?

�  If you want to print a \, you must use the escape
sequence \\

�  What is the output of the following program?

 #include <stdio.h>
 int main(void)

 {

 printf(“\\\\\\”);

 return 0;

 }

30

In-Class Assignment
#1

