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Abstract This paper discusses parallel Data Mining
architecture for large volume of data which eventually
scanning billions of rows of data per record. Here we
compare the different parallel algorithms for Association
Rule Mining and discuss the advantages and disadvantages
of each method. We also compare the computational time of
serial and parallel algorithms for Association Rule Mining.
DATA MINING is a technology that combines traditional

data analysis methods with complicated algorithms for
processing big volume of data.

Rapid advancement of IT technology has resulted
accumulation of tremendous amount of data for organization
and therefore extracting needed information from huge
amount of data has been a big challenge for researchers.

In the process of computing the frequency of the
occurrences of an interesting subset of items in the database
of transactions (called Candidate) process time always is a
big factor of attention. To prune the exponentially large
amounts of candidates, common algorithms, which are most
frequently used, are those dealing with Candidate having
user defined minimum support. In these situations, even with
pruning, finding all association rules requires large
computation power and need a lot of memory.

A traditional computer has a single processor for
executing a task. One way of increasing the computational
speed is by using multiple processors within a single
computer (multiprocessor) or alternatively —multiple
computers, operating together on a single problem,
depending upon the problem and the amount of parallelism
in the problem. What make parallel computing timeless is
the continual improvements in the execution speed of
processors. Therefore, using parallel processors and different
algorithm of implementation of Association Rules is always
a plus.

In general, a non-trivial parallel algorithm may include
some or all of the following:

e Identify portion of work that can be performed

concurrently.
Mapping the concurrent pieces of work onto
multiple processors running in parallel.
Distribute the input, output, and intermediate
data associate with program.
Managing accesses to data shared by multiple
processors.

Synchronizing the processors at various stage of
the parallel program execution.

I. INTRODUCTION
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In the context of parallel algorithm design, processes are
logical computing agent that performs tasks.

Processors are the hardware units that physically perform
computations. Therefore, here, like [3] we suggest the
following distinction.

1) Task Parallel

2) Data Parallel

Treating processes and processors separately is useful

when designing parallel programs for hardware that supports
multiple programming paradigms.
1) Task parallel algorithm split the performed computation
into a set of tasks for concurrent execution defined by task
dependency graph. The task parallel approaches can further
be divided into two groups:

a) Recursive decomposition for including concurrency in
those problems that could use divide and conquer. In this
method, problem is solved by first dividing it into a set of
independent subprograms. Each one of those subprograms is
solved by recursively applying a similar division into
smaller subprograms followed by a combination of their
results.

b) Based on task queue that dynamically assigns the small
portions of the computations to a processor whenever it
becomes available.

2) Data Parallel, distribute the data over the available
processors. Data parallel approach also could be divided into
two sections:

a) A partitioned based on records will assign non-
overlapping sets of records to each of the processors.

b) A partitioning attributes will assign the set of process.

Attribute based is relying on the observation of the

problem which could be set of elementary functions. If

attribute are distributed over multiple processors, then
those function could be executed in parallel. Good
distribution will result in load balancing.

II. ASSOCIATION RULE

Given a set of transactions, find rules that will predict the
occurrence of an item based on the occurrences of other
items in the transaction

This type of mining is useful for transactional data like
market basket application. By association rule mining they
can analyze the data to learn purchase behavior of customer.
An insinuation of form x >y where x and y are item sets.
Example, buying {bread, butter}->{milk}.

Two important measures that help to find good rules are
support and confidence.

Support (s): Fraction of transactions that contain both X and
Y.



Confidence (c): Measures how often items in Y
appear in transactions that contain X.
Given a set of transactions T, the goal of association rule
mining is to find all rules having

-support > minimum support threshold

-confidence > minimum confidence threshold
Our model supposed to automatically find all interesting
rules which is a large task because of the volume of data
involved. One approach to solve this problem is:
Brut Force:

e List all possible association rules

Compute the support and confidence for each rule
Prune rules that fail the minimum support and
minimum confidence thresholds.
Here is an example that can explain this approach.

TID Items Candidate List
1 | AB § >
2 | ACD,E \ M
3 | B,C,D,F \
4 | AEC,D
5 | AB,CF
w

Each itemset is a candidate frequent itemset; count the
support of each candidate by scanning the database. If x :
{C,D} and y: {E} then the support and confidence of x ->y
will be :

Sx->y)=0xUy)/Nfor N=52>Sx->y)=2/5=4
CEx->y)=0xUy)/d(x) & C(x->y)=2/3=.67

Each transaction matches to every candidate then the
complexity is ~ O(NMW). On the other hand the total
number of itemsets is 2d. Therfore the total number of
possible rules would be:

dl dk
X
j=1

d
k

R= dk| | = 3d_pdl g

k=1 j

Too many rules can be extracted from a data set with “d”
items. Thus for 6 items we will have 602 rules (R = 3°-
2°"'41 = 602). There are too many rules so we somehow
need to decrease them. There are different ways to decrease
the number of rules like:

® Reduce the number of candidates (M) since
complete search is M=2d.

Use pruning techniques to reduce M

Reduce the number of transactions (N) as the size
of itemset increases.

Reduce the number of comparisons (NM) by using
efficient data structures to store the candidates or
transactions. So there is no need to match every
candidate against every transaction.

Second approach is Apriori Principal:

The first association rule algorithm that uses support
base pruning to control the growth of candidate itemsets is
the Apriori Algorithm. If an itemset is frequent, then all of
its subsets must also be frequent. Apriori principle follows
the property of support measure that shows:
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e  Support of an itemset never exceeds the support of
its own subsets

VX Y:XcY s(X)=2s(Y)
As an example; in Market Basket Transaction, suppose we
have 6 items and Minimum Support = 3. The support count

of these items are in table 1 :

1-Itemset 2-Itemset
Item Count Item Count
A 4 {A,B} 3

B 4 | JJhen we can eliminate{<A,D} 2

C 4 A these items \ {AC} 3

D 3/ NC,BY 2

E é/ E— P

F {CD} 3

Tablel (# of candidate[ 6]:6) Table2(# of candidateg 6]:15)

And 3-Itemset is {A, B, C} count = 3, {A, B, D} < 3, and
{A, D, C} <3 (# of candidate [6 1—20

3

5+

But after using pruning the result is: [ 1] + [2] +1

With all subset the result is: 6+ 0=41
6

=13
Pseudocode For frequent Item Set [2]

Assume that:

Cy : set of candidate k-itemset

Fy : set of frequent k-itemset

Minsup : Minimum Support

o({i}) : Support Count or number of transaction contains {i}

T : Set of Transaction
1 : Itemset

C : Subset of I
Fork=1

Fy={i|iel & o({i}) >=Minsup} // Fin all frequent
// 1-itemset
Repeat
k=k+1
Cy = apriori_gen(Fy.) // Generate candidate itemset
For each transte T do
C,= Subset (Cit) //Identify all candidates belong to t
For each candidate itemset c € C, do
o (c)=0(c)+1 //increment support Count
end For
end For
Fy={C|Ce Cx & 6 (C)>= Minsup} //Extract the
/] frequent k-itemset
Until F,=0
Result = U Fy
The union of the frequent itemset is the frequent itemset,
which generates the association rules. Counting the
candidate itemset is the most expensive step in computation.
One-way of improvement is using the candidate hash tree to
increase the speed of computation.
Parallel Algorithms




1) Data Mining Server architecture (DMS)

One method is record based partitioning that call DMS
(Data Mining Server) [3] implementation of data mining.
Client/Server or DMS is a term to describe computing
model for development of computerized systems.

This model is based on distribution of functions between
two types of independent and autonomous processes,
server and client. A Client is any process that request
specific services from server processes. A Server is a
process that provides requested services for Clients.
Cline/Server Systems will be classified as a 3-tier. In a 3-
tier Client/Server System, the client requests are handled
by intermediate server (Manager), which coordinates the
execution of the clients request with subordinate servers.
Each server consists of the following elements [3]
(Factory, Engine, Cache, and File Server).

The DMS’s architecture is pictured below:

Client Tools
Manager
Server | ¢ 00 Server Server
Figure 1

2) Count Distribution (CD) Algorithm:

In CD, each processor by building the entire hash tree
that corresponds to all the candidates computes the count of
all the candidates showing up in transactions that stored
locally. The global count is computed by summing up the
count of each processor using a global reduction operation.
The Count Distribution method scales with the data size,
but does not scale with main memory usage. In this case,
each processor can compute the count independently of
others and need to communicate with other processors only
once at the end of the computation. Therefore, it scales
linearly with the number of transactions. [9] This algorithm
has big advantages when the hash trees can fit into the main
memory of each processor. This algorithm is more useful
for a small number of items.

Below you can see a sample of the Count Distribution
Algorithm.
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3) Data Distribution (DD) Algorithm:

Data Distribution algorithm [9] partitions the candidate
itemset between the processors. Then each processor scans
part of the transactions assigned to the other processors as
well as its own local part of transactions. Each processor
assigns P buffers then in processor P;the i buffer is used
for storing local transactions and the remaining buffers are
used for transactions from other processors (For 4
processor, in }[l)rocessor 2, 2" puffer for local transactions
and 1%, 3", 4™ buffers store transactions from other
processors 1, 3, and 4). The buffer is processed by
processor and updates the count of its own candidate
subset then each processor has a different set of candidates
in candidate hash tree. If this buffer is related to local
transactions it is sent to all other processors by
asynchronous sends. Otherwise, if the buffer is related to
other processor it cleared and an asynchronous receives
request is issued to that processor. This process continues
till every processor has processed all the transactions. The
computed count of each processors candidate itemset, is
sent to every other processors by an all-to-all broadcast
operation. This algorithm will cover the memory problem
of the Count Distribution algorithm. In this algorithm a
problem happens when the number of processors
increases. The communication pattern and redundant work
creates a problem for the Data Distribution algorithm.

Below you can see the sample of DD algorithm:
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4) Intelligent Data Distribution (IDD) Algorithm:

The Intelligent data Distribution algorithm [10] locally
stores a portion of the database sent to all processors by
using a ring based all-to-all broadcast. Each processor
communicates by its left and right neighbor. Each processor
has two buffers one for sending and one for receiving. The
send buffer initially fills with one block of local data. Each
processor initiates an asynchronous send operation to the
next right neighbor and receives an asynchronous receive
operation from left neighbor and computes the counts of
candidates assigned to each processor. Then the role of send
and receive buffer is switched and it continues for P-1 times.
The example of IDD algorithm is below. The main point of
this algorithm is partitioning the candidate itemset.

By partitioning the candidate itemset the redundant work
will reduce. As you can see in figure 4 the candidate set is
partitioned based on bit map value.

Proc. 0 hashes all the candidates starting with item 1 and 7.
Proc. 1 hashes all the candidates starting with item 2 and 5.
Processors 2 hash all the candidates starting with item 4.
Proc. 3 hashes all the candidates starting with item 3 and 6.
The candidate starting with bit map value will process
otherwise it will skip then the IDD algorithm will reduce the

redundant work.
Pg Py

Local Remote
Diata Data

All-to-all Broadcast

Figure 4
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N: Number of Data Items
M: Size of Candidate Set
P: Number of Processors

5) Hybrid Algorithms:

The Hybrid algorithm [4], computation is structured
into multiple stages and it is sometimes necessary to apply
different types of decomposition in different stages. It is a
combination of the Count Distribution and the Intelligent
Data Distribution algorithm. Let assume we have P
processors that we have divided them into G groups of
equal size. Therefore each group has P/G processors. If we
have twelve processors and divide them into three groups
then four processors have the same candidate itemsets.
Therefore, each column has combination of all candidate
itemsets. In this example, CD algorithm will apply to each
column and each column will be looked at as one
processor. Then each processor (in this case, column)
computes the local count of all candidate itemsets.

At the second step, we apply IDD algorithm on each row to
find the global count of candidate itemsets. Therefore
reduction operation happened in each row and the count in
each row is the same for processors in each row. At the
third step, all-to-all broadcasting for each column will show
the same frequent itemset for all processors. Finally, the
system is ready to advance to next pass.

The number of groups calculated is based on the memory
size of each processor that can hold a hash tree of m
candidate set. And finally, the data movement will decrease
to (1/G). In figure 5 you can see the three steps of the
Hybrid algorithm. In step one you can see the partitioning
of candidate set and data movement along the columns. In
step two the reduction operation is shown along the rows
and in the last step all-to-all broadcast operations happens
along the columns.

Figure 5: [4] P/G =49 P=12)
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6) Inverted Matrix Algorithms:

There are some problems with other algorithms like
scan database repeatedly, large amounts of computations and
communications, and memory size for finding the frequent
itemset. Authors believe the Inverted Matrix [8] is covered
these problems. This algorithm has two main parts. In first
part database is fully scan and generates a data structure is
called inverted matrix. In second part inverted matrix is
repeated between different processors. In the Inverted
Matrix algorithm if support threshold changes it will be
necessary to rescan the database.

There are three different approaches for transaction
layout: horizontal layout, vertical layout, and inverted matrix
layout that is used in Inverted Matrix algorithm. The most
common approach is horizontal layout that works on
transaction id, and the vertical layout works on the
transactions that have same item. Then the key in horizontal
is transaction id and in vertical layout is item. The inverted
matrix layout is combination of two layouts. Then the items
and transactions check together, first it finds the occurrence
of items in each transaction, then points each transaction to
all items included in the transaction. Inverted Matrix uses
pointer instead of transaction id and points to the location of
next item in the transaction that ordered in ascending order.

25

For building the Inverted Matrix first scan the database
to find frequent itemset in ascending order, then scan again
for sorting the transaction in ascending order based on
frequency result. As you can see in the below L in
transaction one has location 3 in Inverted Matrix, E has
location 4 and so on.

Ascending Order

T,:A L DE T,:L E D A
T,: P DEA-TZPEDA
T;:A P L R T;:R P L A
Item Frequency: A:3,L:2,D:2,E: 2,P: 2, R: 1

Loc Index Transactional array
1 R,1 22

2 P,2 4,2 3,2

3 L,2 4,1 6,3

4 E,2 5,1 5,2

5 D,2 6,1 6,2

6 A3 D,80,80,2

As you can see L is linked to E and E is first empty element,
then link for L becomes 4,1. E is linked to D and D is first
empty element, then link for E becomes 5, 1. D is linked to
A and A is first empty element, then link for D becomes 6,
1. A is last item then link becomed, . Now in next
transaction, P is linked to E and E is second empty element,
then link for P becomes 4,2 and so on.

For implementation the Inverted Matrix in parallel, Inverted
Matrix must be repeatedly sent to all processors. Because the
whole database is in each processor the communication time
for generating global frequent itemset will decrease. In this
approach the frequent itemset evenly distributed between
processors. For example in example above if support count
(8) >1 and we have two processors the location 2, 4, and 6
process in processor 1. Each processor read sub transactions
from Inverted Matrix and build Co-Occurrence Frequent
Item tree (COFI-tree) and after mining, the trees are
discarded.

Advantages and Disadvantages

In Data Mining Server (DMS) the communication
between server and manager and client is one problem.

We have memory problems in the Count Distribution
(CD) algorithm. Memory problem of the CD algorithm is
covered with partitioning of the candidate itemset between
processors in Data Distribution (DD) algorithm. If the
numbers of processors in the DD algorithm increase, we will
face problems because of communication patterns and
redundant work. We have P-1 send to other processors and
P-1 receives operation from other processors. In DD we
have a finite number of communication buffers in each
processor then the all-to-all communication sometimes
makes the process become idle. For example when one
processor finishes an operation on local data and sends the
buffer to all processors if the communication buffer of
receiving is full then the sends must wait till the buffer
becomes empty. In DD all N transactions have to go through
the hash tree of the M/P candidate but in CD only N/P times
go through the hash tree of M candidate.

In Intelligent Data Distribution (IDD) we have point-to-point
communication between neighbors, then the chance of idling
will decrease and we may have idling only for a short time.



IDD requires the algorithm to have good load balancing,
since good partitioning will create an equal number of
candidates in all the processors. We can achieve a load
balancing distribution by using a bin-packing partition
algorithm. [4] In this algorithm it stores a number of
candidate itemset with each item. Then by partitioning items
in P bucket, the number of itemset in each bucket will be
equal. In IDD each processor has M/P number of candidate.
If number of processors increase we have fewer candidates
per processor and it will be difficult to balance the work and
we have smaller hash tree and it reduces the efficiency of
algorithm, because the communication time will be greater
than computation time.
In Hybrid algorithm (HD) by combining CD and IDD the
disadvantages of these two will cover each other.
In Inverted Matrix after creating the Inverted Matrix it will
replicated between processors then communication will
decrease and we will have only two full database scan for
creating the Inverted Matrix.
Comparison of different Algorithms
In this comparison some notation are used like:
Computational time per transaction (T¢rans ), Number of
candidate set ( C ), Traverse of hash tree based on potential
candidates (Ttravers ), Number of leaf visited per transaction
(VC,L), and L is average number of leaf node in hash tree.
Then: Ttrans = C * Ttravers ~ VC,L
Serial Algorithm

In Serial algorithm it must process N number of
transactions

Teomp = (N)( Ttrans )
DMS
The candidate itemset is partitioned between different
servers. Each server separately partitions the transaction
between processors. We will be faced with more
communication. Each server must communicate with the
Manager then Manager with Client

Teomp = N/ S) (Ttrans + TComm(S,M) *TComm(M,C)

CD
Each processors handles N/P number of transactions.
Tcomp = (N/P)( Ttrans )
DD
Number of candidate per process decrease to (C=M/P, M
:Total # of candidate set). Number of leaf node per
transaction (V. ), L/P is average number of leaf node.
Each processor computes all transactions.
Ttrans = C * Ttravers T Ve p
Tcomp = (N)X Ttrans )
1IDD
Number of potential candidate set per process decrease to
(C/P). Then number of leaf node per transaction (V,
Each processor computes all transactions.
Ttrans = (C/P) * Tiravers + VC/p,Lip
Tcomp = (N)( Ttrans )

C/PaL/P)'

Hybrid

Number of potential candidate set per process decrease to
(C/G), then number of leaf node per transaction (V.. )
L/G is average number of leaf node. Number of candidate
per process decrease to (M/G).Number of transactions per
processor is N/(P/G) = NG/P
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Ttrans = (C/G) * Travers + VC/G,L/G
Teomp = (G x N/P)( Trans )
Inverted Matrix
Number of transactions that support threshold will be
divided between processors (m). Number of potential
candidate set per process decrease to (m/p).
Ttrans = (C/P) * Ttravers * VC/P,L/P
Teomp = (m/P)( Tirans ) + 2 Tscan
Conclusion
Data Mining is useful in analyzing large amounts of
data in different area.
Different types of data mining are useful in different types of
applications based on behavior of the data. Association rule
mining is a type of data mining that handles the transactional
application.
There are different algorithms for parallel implementation of
association rule:
DMS, CD, DD, IDD, Hybrid, and Inverted Matrix
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