A Stack Implemented as a linked structure in C
Header file for a list
//---------------------------------------------------------------
// File: Code126_Stack.h
// Purpose: Header file for a demonstration of a stack implemented
// as a linked structure. Data type: Character
// Programming Language: C
// Author: Dr. Rick Coleman
//---------------------------------------------------------------
#ifndef CODE126_STACK_H
#define CODE126_STACK_H
#include <stdio.h>
// Define a structure to be used as the stack item
struct StackItem
{
char ch;
struct StackItem *next;
};
// List Function Prototypes
void InitStack(); // Initialize the stack
void ClearStack(); // Remove all items from the stack
int Push(char ch); // Push an item onto the stack
char Pop(); // Pop an item from the stack
int isEmpty(); // Return true if stack is empty
int isFull(); // Return true if stack is full
// Define TRUE and FALSE if they have not already been defined
#ifndef FALSE
#define FALSE (0)
#endif
#ifndef TRUE
#define TRUE (!FALSE)
#endif
#endif // End of stack header
Implementation (.c) file for a stack
//---------------------------------------------------------------
// File: Code126_Stack.c
// Purpose: Implementation file for a demonstration of a stack
// implemented as a linked structure. Data type: Character
// Programming Language: C
// Author: Dr. Rick Coleman
// Date: January 21, 2002
//---------------------------------------------------------------
#include <stdlib.h> // To get access to malloc()
#include "Code126_Stack.h"
// Declare this as static so no code outside of this source
// can access it.
static struct StackItem *top; // Declare global pointer to top of the stack
//--------------------------------------------
// Function: InitStack()
// Purpose: Initialize stack to empty. Use only
// with a new stack.
// Precondition: Stack must not contain any
// nodes.
// Returns: void
//--------------------------------------------
void InitStack()
{
top = NULL;
}
//--------------------------------------------
// Function: ClearStack()
// Purpose: Remove all items from the stack
// Returns: void
//--------------------------------------------
void ClearStack()
{
struct StackItem *temp;
if(!isEmpty())
{
temp = top;
// Scan stack and free all nodes
while(top != NULL)
{
temp = top;
top = top->next;
free(temp);
}
}
}
//--------------------------------------------
// Function: Push()
// Purpose: Push an item onto the stack.
// Returns: TRUE if push was successful
// or FALSE if the push failed.
//--------------------------------------------
int Push(char ch)
{
struct StackItem *newNode;
// Create a new node and insert the data
newNode = (struct StackItem *)malloc(sizeof(struct StackItem));
// Check to see if memory allocation failed
if(newNode == NULL) return FALSE;
// If all OK then insert the data
newNode->ch = ch;
newNode->next = NULL; // Very important to init this to NULL
// Check to see if the stack is empty
if(isEmpty())
{
// Push new node as first in the stack
top = newNode;
}
else
{
// Push on top of the stack
newNode->next = top;
top = newNode;
}
return TRUE; // Signal successful push
}
//--------------------------------------------
// Function: Pop()
// Purpose: Pop an item from the Stack.
// Returns: TRUE if pop was successful
// or FALSE if the pop failed.
//--------------------------------------------
char Pop()
{
char ch;
struct StackItem *temp;
// Check for empty stack
if(isEmpty()) return '\0'; // Return null character if empty
// Remove the top item from the stack
temp = top;
top = top->next;
// Copy the data from the top item for return
ch = temp->ch;
// Free the removed node
free(temp);
// Return the popped character
return ch;
}
//--------------------------------------------
// Function: isEmpty()
// Purpose: Return true if the stack is empty
// Returns: TRUE if empty, otherwise FALSE
// Note: C has no boolean data type so we use
// the defined int values for TRUE and FALSE
// instead.
//--------------------------------------------
int isEmpty()
{
return (top == NULL);
}
//--------------------------------------------
// Function: isFull()
// Purpose: Return true if the stack is full
// Returns: TRUE if full, otherwise FALSE
// Note: In theory a linked stack cannot be
// full (unless you run out of memory) so
// this function defaults to returning FALSE.
//--------------------------------------------
int isFull()
{
return FALSE;
}
Main file used to test the stack
//---------------------------------------------------------------
// File: ListMain.c
// Purpose: Main file with tests for a demonstration of a stack
// implemented as a linked structure.
// Programming Language: C
// Author: Dr. Rick Coleman
// Date: January 21, 2002
//---------------------------------------------------------------
#include <stdio.h>
#include "Code126_Stack.h"
int main(int argc, char **argv)
{
char testString[51];
int i;
char ch;
printf("Simple Stack Demonstration\n");
printf("(Stack implemented as a linked structure - Stack data type is character.)\n\n");
printf("Creating a stack\n");
InitStack();
printf("Stack created...\n");
// Test pushing and popping first/last item on a stack
printf("Testing push and pop of single item.\n");
Push('A');
printf("Popped: %c\n", Pop());
printf("...done\n\n");
// Test stack by reversing the order of letters in a string
printf("Enter a string to be reversed (50 characters max)");
gets(testString); // Assume user is smart enought to not exceed the limit
// Push all letters on the stack
i = 0;
while(testString[i] != '\0')
{
Push(testString[i]);
i++;
}
// Pop letters and print in reverse
printf("Your string printed in reverse is...\n");
while((ch = Pop()) != '\0') // Pop returns null terminator when stack is empty
printf("%c", ch);
printf("\n\n...done.\n");
return 0;
}