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Abstract—Tropical cyclone intensity estimation is a challenging task as it required domain knowledge while extracting features,
significant pre-processing, various sets of parameters obtained from satellites, and human intervention for analysis. The inconsistency
of results, significant pre-processing of data, complexity of the problem domain, and problems on generalizability are some of the
issues related to intensity estimation. In this study, we design a deep convolutional neural network architecture for categorizing
hurricanes based on intensity using Graphics Processing Unit (GPU). Our model has achieved better accuracy and lower
root-mean-square error by just using satellite images than ’state-of-the-art’ techniques. Visualizations of learned features at various
layers and their deconvolutions are also presented for understanding the learning process.
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1 INTRODUCTION

D EEP learning uses a deep architecture of multiple
processing layers composed of linear or nonlinear

transformations [1], [2], [3], [4], [5], [6] while replacing
handcrafted features with automated feature learning and
hierarchical feature extraction [7]. Convolutional Neural
Networks (CNNs) can be used to model spatial correlation
with translation invariance making them suitable for image
recognition [8], [9]. This study proposes a deep CNN ar-
chitecture for estimating the hurricane1 intensity by learning
features.

1.1 Motivation

Since hurricanes (or tropical cyclones) possess substantial
threats and cause significant damage to lives and properties,
studying the stages of a hurricane is important to determine
its impact. From a scientific perspective, determining an
accurate TC intensity helps i) better initialization in forecast
models, leading to more accurate forecasts, ii) more accurate
historical records of TCs, especially if a technique can be
consistently applied to older satellite imagery (i.e., intensity
reanalysis), and iii) providing consistent intensity estimates
as current intensity estimates are made via a subjective al-
gorithm (Dvorak technique) that is applied inconsistently in
different forecast areas. Initial errors are too high, especially
for weak and storms that are transitioning in structure.

In this study, we use Saffir-Simpson Hurricane Wind
Scale (SSHWS) (provided in Table 1) along with intensity
categorization for tropical storm and tropical depression as
tropical cyclone (TC) intensity categories. Since TC intensity
is based on maximum wind speeds (MWS), estimating the
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1. We use tropical cyclone, TC, cyclone, and hurricane interchange-
ably in this paper.

TABLE 1: Saffir-Simpson Hurricane Wind Scale and related
classifications

Category Symbol Wind speeds Damage
Five H5 ≥ 137 knots Catastrophic
Four H4 113−136 knots Catastrophic
Three H3 96−112 knots Devastating
Two H2 83−95 knots Extensive
One H1 64−82 knots Significant
Tropical storm TS 34−63 knots Significant
Tropical depression TD 20−33 knots Small
No Category NC ≤ 20 knots -

TC intensity by just using image content is a challenging
problem. There are a number of techniques that utilize satel-
lite imagery for estimating tropical cyclone intensity using
Dvorak [10], [11] and deviation-angle variance technique
(DAVT) [12] techniques.

Fig. 1: Illustration of common development patterns and their
intensities according to the Dvorak technique [13]

The main assumption of the Dvorak method is that cy-
clones with similar intensity tend to have a similar pattern.
Figure 1 [13] shows some development patterns used by
the Dvorak technique. Once a pattern is detected over a
24-hour period, the features such as length and banding
from the storm are further analyzed to reach a particular T-
number [14]. This relates tropical cloud structures to storm
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intensity. Nevertheless, this technique is not perfect and still
suffers from subjective biases. Due to inherent limitations of
the empirical method used, it cannot determine subtropical
cyclone intensity. Today, with successful application of the
Dvorak technique for more than 30 years along with some
modifications and improvements, it is used worldwide for
TC intensity estimation. The Advanced Dvorak Technique
[15] provides a nearly instantaneous estimate of TC intensity
in an objective manner. It removes a large amount of the
subjectivity inherent in the process and produces errors
similar to a human in most cases.

On the other hand, the deviation angle variance technique
(DAVT ) technique quantifies the axis symmetry of tropical
cyclones in infrared (IR) satellite imagery and performs a
type of directional gradient statistical analysis of the bright-
ness of IR images. While initial versions assumed that the
center is available as a reference for computations, later
the center finding was automated [16]. DAVT techniques
use different models and parameters for different regions
of tropical cyclones. The DAVT technique was described
and applied to the North Atlantic region by Pineros et al.
(2008, 2011), [17], [18] and Ritchie et al. (2012) [16] and to
the North Pacific region by Ritchie et al. (2014) [12]. Ritchie
et al. (2014) [12] proposed two different fit models for eastern
North pacific region and western North Pacific region. However,
using best-track centers at 6-hour intervals is not reliable
as cyclones change its form and path continuously and
frequently.

In this study, we focus on obtaining higher accuracy
and lower root mean squared (RMS) intensity error than
previously used techniques such as DAVT [12] and Dvorak
techniques [10], [11]. The efficiency of those techniques [10],
[11], [12] depends on the knowledge of a person using
the technique. Although TC intensity estimation has been
greatly studied and many techniques have been devised
[10], [11], [12], [18], determining the intensity of TCs with
high confidence and accuracy is still challenging. The major
issues with previous approaches are inconsistency, significant
pre-processing, complexity, and generalizability.

Inconsistency: Previous techniques provide different
root-mean-square intensity error (RMSE) values for different
regions. The deviations in these RMSE values for different
regions make the results inconsistent.

Significant pre-processing: Dvorak technique requires a
24-hour change in pattern before the pre-estimation of the
intensity. Similarly, DAVT requires hurricane images with
marked hurricane centers. So, evaluation and estimation
require significant pre-processing steps like measurement of
the cloud system, eye, curve, shear and 24-hour changes in
the pattern.

Complexity: Dvorak technique depends on different
geophysical properties and DAVT relies on finding the eye
(or center) of the cyclone. The number of constraints in these
techniques makes it hard to implement. Usually, domain
knowledge is required for these techniques.

Generalizability: Different models for hurricanes in dif-
ferent regions are used in techniques like Dvorak and DAVT.
Dvorak works in tropical regions but not in subtropical
regions. Similarly, DAVT [12] proposed two different fitting
models for western and eastern North Pacific regions. De-
veloping a method or model that works for all regions or

types of hurricanes is important for generalizability.

1.2 Our Contribution

Successful applications of convolutional neural networks
for image recognition with high accuracy [9], [19], [20],
[21], [22], [23], motivated us using convolutional neural
network for hurricane intensity analysis. To the best of
our knowledge, deep convolutional neural networks have
not been studied for hurricane intensity analysis. In this
study, we present a deep convolutional network architecture
for estimating tropical cyclone intensity without relying
on domain knowledge while extracting features, signicant
pre-processing, various sets of parameters obtained from
satellites, and human intervention for analysis. The critical
features such as the curvature, bend, eye, color intensity,
pattern, etc that are required to estimate the intensity of
TC are automatically extracted from a series of feature
maps generated in each step of convolution. In addition, the
convolutional technique is so fast that lenet [9] can be trained
with a huge dataset in a matter of hours. We can harness the
computation power of Graphics Processing Unit (GPU) that
drastically reduces the computation time despite a number
of sequential layers. The applicability of our model for all
regions (Atlantic and Pacific) validates its generalizability.
This model corrects itself by backpropagation in case of
misclassifications. We also present visualization of feature
maps from each layer of convolution using deep visualization
toolbox [24]. Our model, using caffe framework [25] with
GPU, can estimate the intensity of any new cyclone in less
than a second. Not only it obtained better accuracy but it
also achieved lower RMS intensity errors value than other
recent and old techniques. Our model analyzes images and
then provides the TC category.

This paper is organized as follows. The following sec-
tion provides information about deep CNNs. Section 3
explains our layers and architecture of our deep CNN. The
experimental results, visualizations, and performance are
provided in Section 4. The discussion on problematic cases
and limitations are covered in Section 5. The last section
concludes our paper.

2 DEEP CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNNs) have been success-
fully applied for processing two-dimensional visual data [2],
[9], [26], [27]. Since CNNs are inspired by the organization of
animal visual cortex in biological processes, many neurally-
inspired models can be found in the literature (e.g., LeCun
et al. [27]). The overlapping sub-regions of the visual field,
called receptive fields, are obtained through the collection of
small neurons across multiple layers in a CNN. This over-
lapping mechanism allows CNNs to tolerate the translation
of an input image.

CNNs are variants of multilayer perceptrons [9], [27]. A
convolutional network consists of various combinations of
convolutional and fully connected layers. The number of
feature maps generated by a convolution layer is equal to
the number of its kernels [9]. The outputs (feature maps) of
a series of convolutional layers are fed into fully connected
layers of a neural network for classification. The loss layer
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then penalizes the deviation between actual and classified
labels. Generally, a deep neural network is designed as a
feedforward network and can be trained with the back-
propagation algorithm. As the errors are backpropagated
in a network, the network is optimized by updating the
weights and biases to minimize the loss function. Use of
shared parameters (weight and bias) with sparse connec-
tivity reduces the number of free parameters to be learned,
thus improves the computational performance [9], [27]. This
also helps address overfitting problem.

Pooling layer is an important layer in a deep CNN and
typically follows the convolutional layer. Max pooling has
been used frequently in the literature [9], [22], [28]. Max
pooling reduces the number of features by selecting the
feature that has the maximum value among a set of features.
Pooling layer also improves the robustness of the network.

Various methods [3], [5], [22], [29] have successfully used
backpropagation method of Kelley [30]. Today many pattern
recognition tasks are achieved through a backpropagation-
trained neural network. For the high-level abstraction of
features and to learn complicated functions, deep architec-
tures are widely used nowadays [1], [2], [3], [4], [5], [6],
[26]. Various deep learning architectures have produced
state-of-the-art results on various computer vision tasks [4].
For example, the LeNet-5 network has been successfully
applied to hand-written number recognition. Deep learning
can successfully unfold high-level abstractions of features
and select useful features for learning [3], [5].

The complexity of a classification task and the depth of
the network along with limited computing resources makes
training deep CNNs difficult and lengthy. Since training
a deep CNN may take significant time, GPUs have also
been used for training convolutional neural networks for
computer vision problems [23], [31]. Alex et al. (2012) [22]
used GPU for training millions of high-resolution images
and won ImageNet classification contest. Later, the model
of Zeiler and Fergus (2013) [28] outperformed the model by
Alex et al. [22].

3 OUR DEEP CNN LAYERS AND ARCHITECTURE

The architecture of our deep CNN is shown in Figure 2.
Details of the input shape, filter shape, stride, padding,
output size and parameters are tabulated in Table 2. It
clearly provides the number of kernels used in each layer
along with corresponding stride and padding. For example,
3-channel input of size 232x232 is convolved with conv1 (64
kernels of size 10x10, with stride=3 and padding=0).This
produces 64 feature maps of size 75x75. 19,264 parameters
are learned in this process. Applying pool1 on this output
produces maps of size 37x37 and so on. Around 37.5 million
parameters are learned throughout the network.

3.1 Overview of Layers
The weights of filters are initialized using a gaussian noise
and learned through training. Convolutional layer con-
volves input with 3-dimensional filters and applies ReLU
for non-linearity. Similarly, fully connected layer calculates
the inner product and applies ReLU for non-linearity:

f(x) = max(0, x) (1)

The convolutional output at layer l is given in Equation
2, where xij is the output unit at position (i, j), K ∗K is the
size of filter, wab is the value of weighted kernel at position
(a, b), yl−1

(i+a)(j+b) is a receptive field at position (i+a), (j+b)

from layer l − 1, and Bl is the bias for layer l.

xlij =

K−1∑
a=0

K−1∑
b=0

waby
l−1
(i+a)(j+b) +Bl (2)

The hyperparameters such as the size of filters may vary
at different layers. The spatial size of the output volume
(Wo) is computed from these hyperparameters as in Equa-
tion 3, where Wi is the input volume size, k is the size of
kernel applied with stride s and padding p.

Wo =
Wi − k + 2 ∗ p

s
+ 1 (3)

Pooling provides translation invariance, reduces the
number of parameters through down-sampling [23], and
helps avoid overfitting. In our deep CNN, max pooling layer
follows the first, second, third and fifth convolutional layers.

We use the local response normalization (LRN) across
channels. This helps achieve lateral inhibition by normalizing
over local input regions [32]. Normalization [33] is done by
dividing each input by:(

1 +
α

n

∑
i

x2i

)β
where n is the size of local region and α and β are basic pa-
rameters. The units in the same position but from different
channels are normalized in this way.

The last layer in Figure 2 consists of 8 units (equal to
the number of distinct classes). We use softmax loss layer
for computing multinomial logistic loss [25] to update the
weight parameters that minimizes the loss function and to
determine a single class out of K mutually exclusive classes
as follows:

L = − 1

N

N∑
n=1

log

(
exp fyn∑K
k=1 exp fk

)
(4)

where yn is the actual label for input xn, fk is the kth

element of the vector of class scores, and fyn is the class
score for xn corresponding to ynth column.

Softmax takes input from a fully connected layer and
produces a probability value per class. The loss is averaged
over entire mini-batch computed from classified labels and
actual labels. Then the final loss is computed by summing
up total weighted loss over the network. Loss and gradient
with respect to loss are computed with forward and back-
ward passes, respectively.

We used stochastic gradient descent (SGD) technique
to find the minimum cost iteratively. For mini-batch of N
dataset, the optimization is computed as the average loss
over the mini-batch as:

L(W ) ≈ 1

N

N∑
i

fw(X
i) + λr(W ) (5)
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Fig. 2: Network architecture for hurricane intensity estimation showing different steps of convolution and pooling

TABLE 2: Configuration of our Convolutional Network

Layer Shape Output Size Parameter Shape Parameters

Input 3@232x232
conv1 64@10x10, s=3, p=0 75x75 (64, 3, 10, 10) 19,264
pool1 3x3, s=2, p=0 37x37
conv2 256@5x5, s=1, p=0 33x33 (256, 64, 5, 5) 409,856
pool2 3x3, s=2, p=0 16x16
conv3 288@3x3, s=1, p=1 16x16 (288, 256, 3, 3) 663,840
pool3 2x2, s=1, p=0 15x15
conv4 272@3x3, s=1, p=1 15x15 (272, 288, 3, 3) 705,296
conv5 256@3x3, s=1, p=0 13x13 (256, 272, 3, 3) 528,984
pool5 3x3, s=2, p=0 6x6
fc6 3584 (3584, 9216) 27,872,768
fc7 2048 (2048, 3584) 7,342,080
fc8 8 (8, 2048) 16,392

37,558,480

where L(W ) is the stochastic approximation of objective,
fW (Xi) is the loss on data instance Xi, r(W ) is the regular-
ization term, and λ is the weight decay for the regularization
term. SGD updates the weights by combining previous
weights and the negative gradient of loss [22].

Vt+1 = µVt − α∇L(Wt) (6)

Wt+1 =Wt + Vt+1 (7)

In Equation 6, the learning rate (α) is the weight of the
negative gradient, and the momentum (µ) is the weight of
its previous update value (Vt). In Equation 7, Wt+1 is the new
updated weight using the previous weight (Wt) and the new
updated value (Vt+1). These hyperparameters are used in
our work as the basis of “Rule of Thumb” [34]. We use α =
0.001 in the beginning and gradually decrease it by constant
factor of 10 (γ = 0.1). The use of momentum smooths the
weight updates across iterations and makes SGD stable and
faster [25]. We used momentum value as µ = 0.9. As given
in Figure 2, the model computes fW in forward pass and
the gradient ∇fW in backward pass.

3.2 Optimization

Hyperparameters. We tend to use larger convolution filter size
for larger input and decrease the filter size gradually for
higher layers. Layers near the input have fewer filters than
that of the higher layers. However, the number of filters
depends on the capacity of the network and the complexity
of the task. In addition to convolution filters, we also need to
choose the appropriate size of pooling filters. Large pooling

filter drastically reduces the parameters. While large pooling
filter may lead to a substantial loss in information, suitable
filter size helps to mitigate overfitting. Determining the
shape, size, and number of filters is always challenging. It is
important to use the right level of granularity for the dataset
considering the task complexity.

Regularizations. Regularization is a technique to prevent
overfitting in machine learning by penalizing higher order
features to smooth out the learning curve [22]. In our
experiments, we have used the model obtained at around
90% validation accuracy for early stopping. Then we test our
test dataset with this model. Sometimes, early stopping [1]
may cause underfitting. Dropout method [2], [35] prevents
overfitting and improves performance. We used a general
dropout of p = 0.5 in our model.

4 EXPERIMENTS

In this section, we explain our dataset, training and testing,
visualization of features, and performance analysis.

4.1 Dataset

Our dataset has two components: i) infrared (IR) hurricane
images and ii) data for hurricanes. We formed our dataset
by i) collecting information from different resources that
have varying sampling rate, ii) fusing data into a single
dataset, iii) interpolating hurricane data for images, and
iv) augmenting additional images by transformations. We
obtained hurricane images from tropical cyclone repository
of the Marine Meteorology Division of U.S. Naval Research
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TABLE 3: Cyclones used for dataset creation

Region Year Cyclones

Atlantic

1998 Mitch
2003 Isabel
2004 Ivan
2005 Emily, Katrina, Rita, Wilma
2007 Dean, Felix

2010

Alex, Bonnie, Colin, Danielle, Earl, Fiona,
Five, Gaston, Igor, Julia, Karl, Lisa,
Matthew, Nilcole, Otto, Paula, Richard,
Shary, Tomas, Two

2011
Arlene, Bret, Cindy, Don, Emily, Franklin,
Gert, Harvey, Irene, Jose, Katia, Lee, Maria,
Nate, Ophelia, Philippe, Rina, Sean, Ten

2012

Alberto, Beryl, Chris, Debby, Ernesto,
Florence, Gordon, Helene, Isaac, Joyce,
Kirk, Leslie, Michael, Nadine, Oscar, Patty,
Rafael, Sandy, Tony

2014 Edouard

Pacific

2002 Elida, Fausto, Hernan, Kenna
2005 Jova, Kenneth
2006 Bud, Daniel, Ioke, John, Lane
2007 Flossie
2008 Hernan, Norbert
2009 Felicia, Guillermo, Jimena, Rick
2010 Celia, Darby

2011 Adrian, Dora, Eugene, Hilary, Jova, Ken-
neth

2012 Bud, Emilia, Miriam, Paul

Laboratory (http://www.nrlmry.navy.mil). These satellite
infrared (IR) images are captured around fifteen minutes
apart and have additional information such as year, date,
time and name of the hurricane.

We used HURDAT2 data (http://www.nhc.noaa.gov/
data/#hurdat) to label images. This hurdat2 is Tropical Cy-
clone Best Track Reanalysis data2. We also collected a different
recon-only test dataset (http://www.nhc.noaa.gov/recon.
php) for evaluating our model. This test set was totally
based on the recon-informed hurricane date and time. This
dataset was not used for training.

Cyclones and Images in Dataset. To build a single model
for estimating intensity, we used cyclone images from 68
Atlantic cyclones and 30 Pacific cyclones from 1999 to 2014
(http://www.nrlmry.navy.mil/tcdat/), which are provided
in Table 3. To avoid the side-effect of unbalanced distri-
bution of TC categories while training our deep CNN, we
tried to balance the distribution by using storms that reach
at least H3 category (there could be some exceptions). We
collected 8,138 images for every 2 hours from 98 cyclones
in Table 3. Since hurdat2 data was available every 6 hours,
we interpolated 6-hour hurdat2 data to obtain maximum
wind speed at every two hours. This provided us labels
(hurricane category) for images every two hours. For val-
idation purposes, we provide a sample image difference
at two hours apart and their Structural Similarity Index
Measure (SSIM3) and Root Mean Squared Error (RMSE)
values in Figure 3. With the help of best track data, all
images were properly labeled on the basis of their respective
maximum wind speed using Table 1. Then we applied 5
image transformations (horizontal and vertical flips, and

2. Best track data consist of the positions and intensities during the
life cycle of a tropical cyclone.

3. Structural Similarity Index Measure is the index to measure the
similarity between two images. While SSIM=1 indicates perfect simi-
larity, SSIM=0 indicates no similarity.

Fig. 3: RMSE, SSIM and pixelwise difference plot for images
captured two hours apart. Hurricane Isabel from the Atlantic
region (a) 2003-09-11:14 (138.33 kt) (b) 2003-09-11:16 (141.67 kt)

Fig. 4: Illustration of various transformations used (hurri-
cane IVAN from 2014-09-15). (a) original (b) 90◦rotation (c)
180◦rotation (d) 270◦rotation (e) horizontal flip, and (f) vertical
flip

rotations of 90◦, 180◦, and 270◦as shown in Figure 4) to
increase the number of images to 48,828 images. We used
the same hurricane data of the original image for these
transformed images. Moreoever, separate 2,646 images were
collected for testing recon-only dataset.

Pre-processing. First, we cropped unnecessary text from
those images. Then, we formed the maximal square images
by removing the longer region from these rectangular im-
age. After resizing each into a 256x256 image, a 232x232
region is cropped randomly to input to our model.

4.2 Training and Testing

We split our dataset of 48,828 images into training, test
and validation sets mutually exclusive as shown in Table
4. Each transformed image is maintained in the same set
as its original image. In other words, if an original image
goes into the training set, its transformed images are also
assigned to the training set. However, there may be a few
transformed images separated from its original image due
to split ratio (percentage) between these sets. However, this
should not have any major impact on the training as well as
overall accuracy.

For recon-only test dataset, we used recon-informed
hurricane date, time and speed. We have carefully chosen
instances which have correspondence in our hurdat2 test
set. This helps us use an available untrained image for
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TABLE 4: Training, validation and test datasets

Hurricane Category Train Validation Test Total
H1 3314 1104 1816 6234
H2 1860 620 994 3474
H3 1848 616 992 3456
H4 1886 628 1032 3546
H5 603 201 306 1110
NC 126 42 54 222
TD 6363 2121 3576 12060
TS 9863 3288 5575 18726
Total 25863 8620 14345 48828

Fig. 5: Accuracy and loss plots in the training process

that instance. Moreover, this provides the intensity value
somewhat independent of the Dvorak technique [36] and
helps compare RMSE values of our HURDAT2 test dataset
with those of recon-only dataset.

We generated a mean image of images in our training
dataset. All training images were subtracted from the mean
image. So basically we trained our network on the centered
(0-mean) raw RGB values of pixels [22]. This makes our
model more robust to the change of contrast in images.

Our network was trained on GRID K520 4GB GPU. It
took around 8 hours to complete 65 epochs of training.
We stopped training at around 90% validation accuracy to
prevent overfitting. Using GPU of 4GB memory restricted
the maximum size of networks that can be trained. There-
fore, we implemented a mini-batch system for training. A
single epoch of training involves running all mini-batches
to cover the training dataset. We trained our model using
caffe framework (in C++), which supports CUDA.

Figure 5 shows the graph of the validation accuracy, val-
idation loss, and training loss for each training iteration. As
the number of epochs increases, the model learns better. This
can be observed by the gradual increase in accuracy and
decrease in loss after each epoch. The slope of the accuracy
curve becomes close to 0 with a high epoch number. This
indicates convergence to the best model and it is a good
indicator of stopping training. Stepwise learning rate (α) is
reduced by a factor of 10 in our study.

The model obtained at around 90% validation accuracy
was used for testing. We tested our model against the col-
lection of images from both the Atlantic and Pacific regions.
This will help us observe the generalizability of our model
to classify tropical cyclones from both regions. We analyzed
the top (top-1) and the second best (top-2) classification for
each image in the dataset. The probabilities from softmax
function are used in classification. The category is assigned
the TC class with the highest probability.

Fig. 6: Feature maps generated from first convolutional layer of
our network

Fig. 7: Visualization for layers from convolution 3 to fully
connected 7

4.3 Visualization

Figure 6 displays the visualizations at the first convolution
layer using deep visualization toolbox [24]. Input image along
with the feature maps from the first convolution, normal-
ization and pooling are shown sequentially. Each filter pro-
duces a different map. The 7th feature map is presented
by zooming. Activated images from the first convolution
are easy to interpret. Visualizations for other higher layers
are displayed in Figure 7. It is hard to analyze the cause of
activations in those feature maps.

113th and 39th feature maps generated from conv2 are
shown in Figure 8. Feature map 39 is activated with the
upper curvature of hurricane structure whereas feature map
113 is activated with the overall curved shape of the input
hurricane image. This shows that each feature map learns
different structures and features from the same input.

Synthetic images of activation maps generated using deep
visualization toolbox [24] are shown in Figure 9 to visualize
high activation as a result of regularized optimization. Each
image corresponds to a unit representing a category in the
fc8 layer. Circular motion for categories of H1, H2, and H3,
and random structure for NC, TD, and TS can be observed.
Synthetic H4 and H5 images have smooth texture with the
prominent eye of hurricane located nearly at the center.
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Fig. 8: Feature maps from second convolutional layer

4.4 Performance Analysis

In this section, experimental results are presented, and the
performance of our model is compared with the perfor-
mance of previous techniques for intensity estimation.

4.4.1 Models

Once there is a somewhat acceptable architecture, its hy-
perparameters could be adjusted based on the validation
dataset. In our case, we have not always got consistent
response while trying our architecture with different hyper-
parameters.

For example, consider models M1 and M3 in Table 5.
Despite missing the fifth pooling layer (P5) that M1 had,
the accuracy of M3 is slightly higher than the accuracy of
M1. Compared to M1, M2 had the additional fourth pooling
layer (P4). The number of kernels used in the first and
second convolutional layer is slightly less in M2. Despite
using P4 in M2, its accuracy is even lesser than the accuracy
of M1. The pooling layer P4 did not improve the perfor-
mance of M4. If models M3 and M4 are compared, M4 has
one more convolutional layer, while the number of initial
kernels in M4 is more than that of M3, the others are slightly
different. After the second pooling layer (P2), M4 has only
pooling layer after the sixth convolutional layer (P6). This
generated the lowest accuracy among models in Table 5. The
number of parameters learned in M4 is significantly higher
compared to M3. Model M5 is a type of fusion of other
models. Its number of kernels for the first convolutional
layer is less than that of M4 (with the lowest accuracy) but
higher than others. It has the additional fifth pooling layer
(P5) that M3 (the second highest accuracy) did not have. Its
parameters for fully connected layers is less than M4 but
higher than others. Model M5 has generated the best results
in our experiments.

The model used for the rest was the final snapshot
taken at the end of 56, 095th iteration (equivalent to 65
epochs) that obtained around 90% validation accuracy for
the best model. 4GB RAM and 4GB GPU memory were
enough to train our network in about eight hours. After
classifying 14,345 hurdat2 and 2,646 recon-only test images,
we analyzed the performance of our model.

4.4.2 Confusion Matrix

We present the confusion matrix of hurricane classifications
for both hurdat2 and recon-only datasets in Table 6. The
number of correctly classified images for any category are
the numbers along the diagonal.

Fig. 9: Synthetic images of 8 units of fc8 layer. Each unit
corresponds to single class label.

In Table 6, we can see that a hurricane is more likely to
be misclassified to a closer class (low intensity difference)
rather than to a far class (with high intensity difference).
Some near misses (i.e., misclassified by a single class) are
observed. For example, TD is mostly misclassified as TS, H1
as TS, H5 as H4, and so on. So, our model is mainly confused
with cyclones of similar intensity.

4.4.3 Classification Performance
Precision, recall (probability of detection), and f1-score are
used to evaluate the performance of our model. Precision(P)
is the ratio of the number of true positive class values to
the total number of positive classifications. Recall(R) is the
ratio of the number of true positive classifications to the
the number of positive class values in the test data. F1-
score(F1) is the harmonic mean of recall and precision used
to measure tests accuracy. Table 7 presents the precision,
recall, and f1-score to be around 0.8. This shows that our
model is robust and is not biased towards recall or precision.
For recon-only dataset, the values of these measures are
around 0.73.

We also analyze the performance of our model by pro-
viding top-1 and top-2 accuracies. Table 8 presents whether
the corresponding category is classified as the top-class
or the second-class. Exact-hit is the correct classification
of hurricane with the highest confidence. 2nd-hit is the
correct classification with the second highest confidence.
Top-1 measure is the number of exact-hits whereas top-2
is the sum of exact-hits and 2nd-hits. For example, if any
image with intensity H1 has classification probabilities as
H1 : 73.3%, H2 : 15.5%, TD : 5.1%, then it is counted in
both top-1 and top-2 (exact-hit). However, if H2 image has
the same classification probabilities then it contributes to the
top-2 accuracy (2nd-hit).

For hurdat2 dataset the top-1 accuracy obtained is
around 80.66%. The top-2 accuracy is 95.47% and suggests
that if misclassification between neighboring (confusing)
classes is reduced, very high accuracy can be obtained.
Similarly, the accuracies of top-1 and top-2 for recon-only
dataset are around 76.91% and 92.55% respectively.

4.4.4 RMS Intensity Errors
Table 9 provides root-mean-square intensity error (RMSE)
values measured in knots. For categories TD through H4,
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TABLE 5: Comparison of results on different network configurations. The best results are highlighted in bold.

Model Top-1 Top-2 f1-score RMSE MAE
ID CNNs FCs Parameters Accuracy Accuracy (kt) (kt)

M1 5 3 C60@10, P1, C256@5, P2, C256@3, P3, C192@3, C216@3, P5,
FC3072, FC1536, dropout=0.6, α=0.001, µ=0.9 77.85% 95.04% 0.78 11.05 7.65

M2 5 3 C56@11, P1, C216@5, P2, C256@3, P3, C192@3, P4, C216@3, P5,
FC2048, FC1024, dropout=0.6, α=0.001, µ=0.9 76.58% 94.29% 0.77 11.05 7.88

M3 5 3 C60@10, P1, C256@5, P2, C256@3, P3, C192@3, C216@3, FC3072,
FC1536, dropout=0.5, α=0.001, µ=0.95 78.45% 95.10% 0.78 10.87 7.50

M4 6 3 C72@12, P1, C216@5, P2, C216@3, C256@3, C256@3, C216@2,
P6, FC4096, FC3072, dropout=0.5, α=0.001, µ=0.9 69.28% 90.76% 0.69 13.38 9.20

M5 5 3 C64@10, P1, C256@5, P2, C288@3, P3, C272@3, C256@3, P5,
FC3584, FC2048, dropout=0.5, α=0.001, µ=0.9 80.66% 95.47% 0.80 10.18 7.28

TABLE 6: Confusion Matrix

hurdat2 Recon
NC TD TS H1 H2 H3 H4 H5 Total NC TD TS H1 H2 H3 H4 H5 Total

A
ct

ua
l

C
at

eg
or

y

NC 32 20 2 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0
TD 9 3174 393 0 0 0 0 0 3576 0 71 31 0 0 0 0 0 102
TS 1 488 4838 208 25 10 3 2 5575 0 87 849 44 3 1 0 0 984
H1 0 16 423 1235 115 20 7 0 1816 0 1 38 322 36 7 4 0 408
H2 0 0 70 193 614 98 19 0 994 0 0 13 54 181 39 13 0 300
H3 0 0 35 37 156 657 106 1 992 0 0 15 27 32 195 48 1 318
H4 0 0 14 4 24 117 816 57 1032 0 0 7 3 8 25 319 28 390
H5 0 0 0 0 1 14 86 205 306 0 0 0 0 1 3 42 98 144

Total 42 3698 5775 1677 935 916 1037 265 14345 0 159 953 450 261 270 426 127 2646

TABLE 7: Classification Report

hurdat2 Recon
Cat P R F1 Total P R F1 Total
NC 0.76 0.59 0.67 54 - - - -
TD 0.86 0.89 0.87 3576 0.45 0.70 0.54 102
TS 0.84 0.87 0.85 5575 0.89 0.86 0.88 984
H1 0.74 0.68 0.71 1816 0.72 0.79 0.75 408
H2 0.66 0.62 0.64 994 0.69 0.60 0.65 300
H3 0.72 0.66 0.69 992 0.72 0.61 0.66 318
H4 0.79 0.79 0.79 1032 0.75 0.82 0.78 390
H5 0.77 0.67 0.72 306 0.77 0.68 0.72 144
avg 0.80 0.81 0.80 14345 0.78 0.77 0.77 2646

TABLE 8: Top-1 and Top-2 hits

Category Total Top-1 2nd hit Top-2
NC 54 32 15 47
TD 3576 3174 364 3538
TS 5575 4838 665 5503
H1 1816 1235 432 1667
H2 994 614 215 829
H3 992 657 212 869
H4 1032 816 148 964
H5 306 205 73 278

Total 14345 11571 2124 13695

the estimated speed is determined as the weighted average
of two highest categories with respect to their probabilities.
Otherwise, the mean speed of the category that has the
highest probability is used. We also limit the weighted
average of speed within the speed interval of the category.
The difference between the estimated speed and the actual
speed is used for RMSE calculation.

The root-mean-square errors (RMSEs) of hurdat2 dataset
and recon-only dataset are 10.18 kt and 11.36 kt, respectively,
for the Atlantic and Pacific regions. Root-mean-square error
(RMSE) value obtained by Pineros et al. (2011) for estimating
the tropical cyclone intensity for the North Atlantic Basin
was 14.7 kt [18]. This was further improved by Ritchie et

TABLE 9: Comparison of RMSE values in kt with results from
DAVT techniques [12] and [16]

Western Eastern North
Cat Hurdat2 Recon North North Atlantic

Pacific [12] Pacific [12] [16]
NC 9.41 - - - -
TD 6.52 9.61 11.0 10.0 -
TS 9.81 9.18 13.8 11.5 11.0
H1 11.69 9.94 19.5 16.6 12.5
H2 12.50 11.62 12.5
H3 13.78 15.97 12.6
H4 11.88 13.21 19.5 26.1 17.7
H5 13.45 11.47 32.4
Avg 10.18 11.36

al. (2012) using improved deviation angle technique [16]
to 12.9 kt. In the North Pacific, using the same deviation
angle technique, Ritchie et al. [12] achieved the RMSE of
14.3 kt. They also presented RMSE for different categories
such as the tropical depression, tropical storm, etc. Our
results indicate significant improvements with respect to
previous techniques [12], [16] for both the Atlantic and
Pacific regions. Not only overall RMSE values improved, but
our RMSE values are also better for each category. Table 9
shows the comparison of our method in terms of RMSE (kt)
with recent DAVT techniques [12], [16] across the Atlantic
and Pacific regions per category. This table also validates
the improvements of our method.

5 DISCUSSION

5.1 Misclassifications

Correctly classified hurricane images for all categories are
displayed in Figure 10. For example, in Figure 10 (h), H5
hurricane image is correctly classified H5 with 58.26% con-
fidence. Figure 11 provides the images having the second
highest confidence with the correct label (2nd-hits). For
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Fig. 10: Correct classification with highest confidence

Fig. 11: Images with 2nd-hits and their confidence

example, H2 hurricane in Figure 11 (e) is classified as H2
with the second-highest confidence (41.37%).

Furthermore, Figure 12 shows misclassifications for each
category. These images do not fall under either top-1 or top-
2 hits. Our model was unable to provide good classifications
for these images. Reaching conclusions based on these sam-
ple images might be misleading. These results should be
analyzed along with Table 6 that shows misclassifications
into various categories. It is always possible to misclassify
with a close category. The most important problem is why
images are classified into distant categories. For example, 14
H4 category images are classified as TS. We do not use any

Fig. 12: Misclassifications

temporal information about categories, and the use of tem-
poral information could improve the accuracy. For example,
we did not use the classification of a storm in previous 6
hours for the analysis. Use of such information would be
helpful. Adjusting deep CNN based on misclassifications is
very challenging as it is hard to interpret its model.

5.2 Limitations
Quality of Dataset. The main problem with training was the
quality of dataset. Images contain colored latitude-longitude
grids and coastlines. These grids and coastlines in images
act as noise and may complicate training. In addition, the
color of grids is not uniform throughout the dataset. Hurri-
cane MITCH in 1998 contains red grids whereas others have
yellow grids. This mismatch in color can affect the training
of the model. Additionally, we have lots of images con-
taining black patches (e.g., Figure 10 (g) and 10 (h)). These
patches do not carry any information about the hurricane
and may complicate the learning process.

Size of Dataset. The size of a dataset is a major concern in
any deep learning technique. We need a very large training
dataset to avoid overfitting and for better generalizability
of the model. We did interpolations and various transfor-
mations to reach up to 25,863 images (Table 4) for training,
but this number is still not high for a deep learning process.
It was hard to collect a large number of images because
best track data (hurdat2) had information about images
for every 6 hours. This massively restricted the number
of images that can be collected each day. There is also a
substantial difference in the number of images for each
category. Hurricanes with the intensity TS and TD are more
likely to occur than hurricanes of H4 and H5 leading to the
skewness in the dataset. These biases in the dataset may
affect the accuracy of classification.

Hyperparameters. The performance of the model depends
on the architecture of the network. Parameters like the num-
ber of convolutional layers, pooling layers, fully connected
layers, and the number of filters (kernels) used in each layer
affect training as well as testing. Due to the limitation of
hardware resources, we have used 5 convolutional layers
and 3 fully connected layers. Various minor adjustments
to the learning rate, the size of filters, stride, padding, etc.
may improve the accuracy. Refinement in regularization
and normalization are yet to be tested with different com-
binations in this network. Hyperparameters from previous
CNN techniques [22], [25] are taken into consideration while
building our network. Future work should test with a differ-
ent number of layers and parameters. However, our current
results are very promising.

6 CONCLUSION

In this paper, we presented a reliable and robust technique
for estimating the intensity of tropical cyclones using a deep
convolutional neural network. Deep network with multiple
convolutional and fully connected layers using regulariza-
tion techniques make the complex feature extraction task
from hurricane images effective. Estimating the intensity
category of new hurricane sample can be done in seconds
with very little human effort. Our model shows significant
improvement in both RMSE values and generalizability.
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There are various small tasks that can improve the accu-
racy and lower the RMSE intensity value in our method.
First, the colored grids and coastlines could be removed
from the training and test sets. It is also possible to use
images without grids and coastlines. In addition to that,
removing black patched images from our dataset might
increase the overall accuracy of our findings. It is always
a good idea to use a large training set for deep learning.
Brightness and contrast could be used in augmenting the
dataset. Finally, as a deep convolutional neural network is
governed by several hyperparameters, increasing the num-
ber of convolutional and fully connected layers, tweaking
the parameters like regularization and learning rate for
further optimization might improve the accuracy.
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