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Abstract—
Automated image analysis of microscopic images such as protein crystallization images and cellular images is one of the important research
areas. If objects in a scene appear at different depths with respect to the camera’s focal point, objects outside the depth of field usually
appear blurred. Therefore, scientists capture a collection of images with different depths of field. Focal stacking is a technique of creating a
single focused image from a stack of images collected with different depths of field. In this paper, we introduce a novel focal stacking
technique, FocusALL, which is based on our modified Harris Corner Response Measure. We also propose enhanced FocusALL for
application on images collected under high resolution and varying illumination. FocusALL resolves problems related to the assumption that in
focus regions have high contrast and high intensity. Especially, FocusALL generates sharper boundaries around protein crystal regions and
good in focus images for high resolution images in reasonable time. FocusALL outperforms other methods on protein crystallization images
and performs comparably well on other datasets such as retinal epithelial images and simulated datasets.

Index Terms—Focal stacking, auto-focusing, Harris corner response measure, protein crystallization
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1 INTRODUCTION

Imaging technology has become a critical module of scientific
analysis systems in biochemistry, physics, and space sciences.
Microscopy imaging enables researchers and experts to vi-
sualize and analyze microscopic world. Although there have
been significant improvements on many aspects of imaging
technology, focusing of objects is still a problem for many
applications. Image acquisition systems are usually equipped
with a camera that can only capture objects in focus if they lay
in the depth of field of the camera. To capture other objects
in focus, the microscope lens can be moved up or down to
update the depth of field accordingly. Changing the depth of
field does not solve the problem since there is no single in-focus
image that covers all objects. As such, scientists are required to
analyze a series of images since each image has only a section
or region in focus.

Depending on the problem domain, focusing problems are
dealt with 1) by adjusting the level or focal point of the
camera to generate the best in focus image using a single
depth of field, or 2) by fusing in-focus regions from multiple
images that are captured with different depths of field. The first
method is usually named as “auto-focusing” while the second
one is usually termed as “focal stacking” in the literature.
The microscopic images such as protein images may have 3D
objects that can appear at different levels of a solution. If objects
appear at different depths, auto-focusing usually fails. Focal
stacking algorithms may also fail due to several assumptions
made while fusing images:

(a) The contrast of a region will be higher when it is in focus
with respect to when it is out of focus.

(b) The brightness of a region is higher when it is in focus
compared to when it is out of focus.
There are also a few challenges of focal stacking:

(a) There may be discontinuities in the final image, since pixel
values are obtained from a set of images.

(b) Since images are captured at different times, the lighting
conditions may change.

(c) The size of an object when it is in focus and out of
focus might be different. Typically, perspective model as in
pinhole camera model is observed when regular cameras
capture images. However, the fused image follows ortho-
graphic projection model.
The target domain of our focusing problem is protein

crystallization images. The major drawback of automatic pro-
tein crystal scoring systems is the possible miss of a crystal.
Two good indicators of protein crystallization for fluorescence
microscopy are high intensity and sharp edges around crystal
regions. If the well illumination is poor or the captured image
is out of focus, the automated techniques are likely to miss
crystals due to deterioration of these indicators. It is important
to process focused images not to miss protein crystals. Once a
protein crystal is detected, an expert tries to optimize condi-
tions to improve the quality of a protein crystal to be evaluated
using X-ray diffraction [1].

In this paper, to address the limitations of assumptions and
challenges of focal stacking algorithms, we propose a novel
focal stacking method called FocusALL whose basics were
introduced in [2]. Our FocusALL method benefits from Harris
Corner Response Measure [3] to evaluate initial goodness of
pixels. After ranking pixels based on this measure, FocusALL
decides whether a pixel belongs to in-focus or out-of-focus
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area using the neighborhood information. FocusALL can be
adapted to images at any resolution after determining the base
image resolution where HCRM performs effectively. FocusALL
can also be adapted to images captured with varying illumina-
tion. The contributions of this paper are as follows:
(a) FoucsALL method can effectively identify low contrast and

low intensity regions that are in focus,
(b) Our enhanced FocusALL method can deal with high reso-

lution images in reasonable time,
(c) Our enhanced FocusALL technique generates sharper ob-

ject regions for images collected under varying illumina-
tion, and

(d) Our FocusALL method outperforms other compared work
on our protein crystallization trial image set while also
generating good results on other sample images.
The rest of the paper is organized as follows. Section 2 pro-

vides an overview of related work. In Section 3, our FocusALL
technique for focal stacking is discussed. Enhanced FocusAll
technique for high resolution and varying illumination images
are described in Section 4. In Section 5, the results and anal-
ysis of our experiments are provided. Finally, the last section
concludes the paper with future work.

2 BACKGROUND AND RELATED WORK

This section provides a discussion of related work on auto-
focusing and focal stacking.

2.1 Auto-focusing Techniques
Broadly, auto-focusing techniques can be categorized as active
and passive. Both the active and passive auto-focusing tech-
niques are limited by the range of depth of field since the
output image depends on a single depth of field.

2.1.1 Active Auto-focusing
In an image acquisition system, if the system allows selection of
the object of interest and determines where the camera should
be positioned with respect to its distance, it is called active
auto-focusing. An active auto-focusing system is equipped
with a special hardware that helps determine the correct
position of the camera lens. Stauffer [4] describes an active
auto-focusing system in which a beam of modulated energy
is projected towards a subject. The special hardware provides
a digital output indicating the position of the reflected energy,
and thus the position of the object from the camera can be
computed. The system finally captures the image using a single
depth of field that is considered as the best depth of field.
Bezzubik et al. [5] show how image contrast vary depending
on the position of the stage relative to a microscope objective.
The authors also propose an algorithm to find the best focusing
position in a microscope. Active auto-focusing is generally
expensive as it requires expensive hardware modification.

2.1.2 Passive Auto-focusing
An alternate to active auto-focusing is passive auto-focusing
where the best focused image is selected from a series of
images captured at different depths of field. Let I represent an
image set {I1, I2, I3, I4, ...., Ik } and |I| represent the number
of images in the set I. These images are captured with varying
depths of field. All images in I have size W x H. The pixel at
(x, y) in ith image Ii is represented as Ii(x, y). In passive auto-
focusing, an image is selected as the best focused image out of

all the images in the set. To define the best focused image, we
use an objective function that provides a value for an image
according to its clarity and details. Let Fm(I) be the function
that measures the quality of image I using objective function
m. Let If represent the best focused image in I and BF (I, Fm)
represent the function for finding best focused image in I using
objective measure Fm(I). Then, BF (I, Fm) = If where Fm(If )
= max1≤i≤|I| Fm(I), If ∈ I, and 1 ≤ f ≤ |I|.

In the literature, various quality measures have been pro-
posed to evaluate image focus. Objective functions such as
Laplacian, variance, Vollath-F4 [6] , Vollath F5 [6], entropy, etc.
are some basic examples of quality measures. Table 1 provides
a list of some objective functions with their mathematical
expression. Forero et al. [7] state that objective functions like
Laplacian and variance do not benefit from clear and sharp
parts that appear in all images.

It is hard to find a single algorithm that works best for
all kinds of images. Some solutions have proven to be more
efficient than others in particular domains. Comparative evalu-
ation of these objective functions has been presented in several
papers. For medical and biological images, many studies have
shown that normalized variance and Vollath-F4 [6] are the
best focusing measures ([8] [9] [10] [11] [12]). In [13], it has
been shown that Vollath-F4 and Mid-frequency discrete cosine
transform perform reasonably well in real-time autofocusing.

2.2 Focal Stacking
Focal stacking is a method of generating a focused image from
images captured at varying depths of field by fusing in-focus
areas. The objective is to generate a composite image with
all regions in focus by selecting the in-focus pixels from the
different image slices. Broadly, focal stacking algorithms can
be classified into 3 classes: pixel based, neighbourhood based
and transformation based methods ([14] [15] [16]).

2.2.1 Pixel Based Focal Stacking (PBFS)
The most basic focal stacking method is the pixel based focal
stacking (PBFS) where each pixel value at the corresponding
position in all images is compared to determine the best in-
focus pixel value. For an input stack image set I and pixel
position (x,y), the best representative pixel value is determined
using an objective function and selection criteria. Laplacian is
one of the commonly used objective functions. Using a certain
kernel function, Laplacian (L) value for every pixel position
(x,y) is calculated. For each image Ii ∈ I, a Laplacian image
Li is created. The maximum selection criteria is then used
to determine the best representative pixel for every position.
At any position (x,y), If (x, y) = Ik(x, y) where Lk(x, y) =
max

1≤i≤|I|
Li(x, y) and 1 ≤ k ≤ |I|. This method can be used with

different objective functions.

2.2.2 Neighborhood Based Focal Stacking (NBFS)
This method is an improvement of pixel based focal stacking
(PBFS). In PBFS, pixel values may be picked from different im-
ages. This may cause discontinuity around the objects in the fi-
nal focused image. Neighborhood based focal stacking (NBFS)
algorithms use neighborhood information to get appropriate
value of a pixel to minimize the inconsistency [17] [18]. NBFS
benefits from surrounding pixels rather than solely relying on
pixels on the same projection. As in PBFS, an objective function
is necessary to choose the best pixel value. Our FocusALL
technique described in this paper is a NBFS method.
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TABLE 1: Objective functions

Name Objective Function (Fm(I))
Vollath-F4 Fvol4(I) =

∑W−1
x=1

∑H
y=1 I(x, y).I(x+ 1, y)−∑W−2

x=1

∑H
y=1 I(x, y).I(x+ 2, y)

Vollath F5 Fvol5(I) =
∑W−1

x=1

∑H
y=1 I(x, y).I(x+ 1, y)−W.H.(I)2

Norm Variance Fnormvar(I) =
1

WH(I)

∑W
x=1

∑H
y=1[I(x, y)− I]2

Laplacian Flap(I) =
∑W

x=1

∑H
y=1[I(x− 1, y) + I(x, y − 1) + I(x+ 1, y)+
I(x, y + 1)− 4.I(x, y)]2

2.2.3 Transformation Based Focal Stacking (TBFS)
In this method, each input image in spatial domain is first
transformed into another domain. The image quality and de-
tails are then compared in that domain using some objective
functions and comparison methods. After determining appro-
priate output results, the image is re-transformed to the spatial
domain by applying inverse transform. In the literature, image
fusion using various transformation methods such as discrete
wavelet transform, complex wavelet transform, and curvelet
transform have been proposed ([19] [14] [20] [21]). Forster et
al. [15] propose complex-valued wavelet based image fusion
algorithm. This method utilizes real and complex wavelet
transforms to identify in-focus regions. The paper provides
experiments on simulated image stacks as well as biolog-
ical images. The complex wavelet based method is shown
to outperform focal stacking using real-valued wavelet. One
important thing to note is that there is a trade-off between ca-
pability of obtaining spatial details and the sensitivity to noise
in wavelet transform technique [22]. Image fusion algorithm
by combining curvelet and wavelet transform is described
in [23]. A comparative analysis of different multi-resolution
transforms for image fusion has been presented in [22].

To the best of our knowledge, there has been no studies on
auto-focusing for protein crystallization images. The state of
the art techniques did not provide satisfactory results on our
protein crystallization images. In this paper, we introduce a
novel focal stacking technique called FocusALL, and evaluate
the performance with comparative methods in the literature.
The details of our technique is described in the next section.

3 OUR FOCUSALL TECHNIQUE

In this section, we introduce our neighborhood based fo-
cal stacking technique named as FocusALL. To describe our
method, we consider a set of 6 images of size 320x240 shown
in Fig. 1 with different depths of focus (distance from the lens).
This image set has 2 regions of interest. Regions R1 and R2 are
best focused in images I2 and I6, respectively.

3.1 Depth Color Image
For every pixel position (x,y), the final focused image If
contains the pixel from an image Ii in the input stack I. Let
Ci represent the color for image Ii. Depth color image can be
represented as CI(x, y) = Ci, if pixel(x, y) is chosen as Ii(x, y)
where 1 ≤ i ≤ |I|. The depth color image gives an insight of the
depth view of the objects. Fig. 2(a) is the focused image using
the lowest intensity pixels and Fig. 2(b) is the corresponding
depth color image. Blue, green, red, cyan, yellow, and pink

(a) Image I1 (b) Image I2 (c) Image I3

(d) Image I4 (e) Image I5 (f) Image I6

Fig. 1: Images of a protein crystallization sample captured with
different depths of focus

(a) Fused image (b) Depth color image

Fig. 2: Selecting lowest intensity pixels

colors represent pixels selected from images I1, I2, I3, I4, I5,
and I6, respectively.

3.2 Harris Corner Response Measure (HCRM) and Our
Modification
Harris et al. [3] introduced a measure for detecting corners
in an image. Harris corner detector provides improvement to
Moravec’s corner detector [24]. Harris corner method uses the
principal curvatures of a 2-dimensional local auto-correlation
matrix based on the first derivatives of an image. Let this
matrix A be represented as in Equation 1:

A =

[
SxSx SxSy

SxSy SySy

]
(1)

where SxSx, SySy , and SxSy are obtained using product of
first derivatives (Sx, Sy) using a smooth circular window w
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such as Gaussian as follows:

Sx =
(

∂I
∂x

)
⊗ w Sy =

(
∂I
∂y

)
⊗ w

SxSx =
(

∂I
∂x

)2
⊗ w SySy =

(
∂I
∂y

)2
⊗ w

SxSy =
(

∂I
∂x

∂I
∂y

)
⊗ w

Then, Harris corner response measure at a specific pixel
(x,y) is computed as in Equation 2 where k is a constant.

M(x, y) = Det(A(x, y))− k(Trace(A(x, y)))2 (2)

The value of M(x,y) is high for the corner pixels. In out-
of-focus image, pixels are smoothed by neighboring pixels.
Hence, the difference in intensity between neighboring pixels
of defocused image is less in comparison to the difference
in intensity in the focused image. Harris Corner Response
Measure (HCRM) depends on the difference in intensity. In
a focused image, the variation from a pixel to its neighbor
is expected to be higher than variation in defocused image.
Therefore, it is reasonable to use this value as an objective
function in focal stacking.
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Fig. 4: Inclusion of pixels as threshold is reduced for a checker-
box image (a)-(c) Original Harris, (d)-(f) Trace, and (g)-(i)
FocusALL

The M(x, y) is actually a function of eigenvalues (α and
β) of the matrix A in Equation 1. These eigenvalues are corre-
lated with the principal curvatures of the local auto-correlation
function [3]. The determinant in M(x, y) can be computed as
(α ∗ β) whereas the trace is equal to (α + β). The contours
of M(x, y) with respect to α and β are shown in Fig. 3(a). A
good corner pixel is expected to have high positive M values.
Negative values of M indicate edge pixels (if the values are
above a threshold). Therefore, negative or low positive M
values are eliminated for corner detection. Fig. 4(a-c) shows
inclusion of pixels as the threshold for corner pixels is reduced
for a checkerbox image. For positive values, only the number
of corner pixels has increased in Fig. 4(b).

While HCRM can differentiate corners from edges, it gives
little weight to edge pixels that has strong gradient in one
direction. However, in focal stacking algorithm, both corners
and edges are important. To address this, we modify the calcu-
lation of HCRM value. The key idea is to rank corner and edge
pixels. If corner and edge pixels are given equal importance,
M(x, y) can be represented with the trace of matrix A or the
summation of eigenvalues. In such a case, the contours of
M(x, y) would be as shown in Fig. 3(b). However, using the
trace only may give more weight to edges. In Fig. 4(c-e), the
darker corner pixels are added later than the other edge pixels
as the threshold is lowered. To give more weight to corner
pixels than edge pixels, the modified HCRM value is given
in Equation 3, which is used as the objective function in our
FocusALL method:

M(x, y) = Det(A(x, y)) + k(Trace(A(x, y)))2 (3)

The contours of this proposed measure are provided in Fig.
3(c). The curve of the contours is an indication of the emphasis
on the corners pixels. A corner pixel with two low eigenvalues
may be preferred to an edge with (one) high eigenvalue. Fig.
4(g-h) shows that using this measure adds first the corner
pixels and then the edge pixels as the threshold is lowered. If
the threshold is very low, the outputs of trace and the modified
HCRM measure may yield the same outputs. It depends on
the application domain whether to rank corner pixels higher
than edge pixels or not. Since our algorithm gives precedence
to pixels with high M values, it is reasonable to start around
the corners and fill the regions around the corners accordingly
while building the in-focus image.

3.3 FocusALL
In this section, we present our focal stacking technique, Fo-
cusALL, to generate the focused image from a stack of im-
ages collected under different depths of field. FocusALL is
a neighborhood based focal stacking technique. NBFS uses
neighborhood information to minimize discontinuity in the
fused image. The modified HCRM in Equation 3 is used as
the objective function in our technique. The two major steps in
FocusAll are described next.

3.3.1 Calculate representative HCRM value
In this step, for all images in the input stack I, HCRM value for
every pixel is calculated. Then, the best representative HCRM
value is determined for every pixel position. Let Mi (x,y)
be the HCRM value for the pixel position (x,y) of an image
Ii calculated as in Equation 3. Once all Mi(x, y) values are
calculated, maximum selection criteria is applied to determine
the best representative M for every position (x,y): M(x, y)
= max1<i≤|I|Mi(x, y). The pseudo-code for this algorithm is
provided in Algorithm 1. The algorithm takes image stack
I as the input and returns a list with the attributes: HCRM
value, image index i, and pixel position (x,y) for the best
representative HCRM values for all pixel positions.

3.3.2 Generate focused image
We generate an image by selecting best pixels from the images
in input image stack I. Firstly, the best representative M(x, y)
values obtained from step 1 are sorted in descending order
based on HCRM values. To obtain the final focused image,
we start by filling the pixels having highest HCRM values in
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Fig. 3: Variation of contours with eigenvalues

Algorithm 1 Find representative HCRM value for every posi-
tion (x,y)

1: Input: I (Image stack)
2: Output: ObjList (Object array with attributes HCRM,

imgIndx, x and y)
3:
4: procedure ObjList = REPHCRM(I)
5: // Mi(x, y) is HCRM at pixel (x,y) for image Ii
6: i = 0
7: for x = 1; x <= I.Width; x++ do
8: for y = 1; y <= I.Height; y++ do
9: Mmax = 0

10: maxIndx = 0
11: for k = 1 to |I| do
12: if Mk(x, y) > Mmax then
13: Mmax= Mk(x, y)
14: maxIndx = k
15: end if
16: end for
17: ObjList[i].HCRM = Mmax

18: ObjList[i].imgIndx = maxIndx
19: ObjList[i].x = x
20: ObjList[i].y = y
21: i++
22: end for
23: end for
24: end procedure

the descending order. Let us consider the mth highest HCRM
value is for the position (xm, ym) and is obtained from image
slice Im. Also, consider the neighborhood window size is dx x
dy. To find the best pixels around (xm, ym), we first determine
the most frequently used image slice in the region (xm-dx/2,
ym-dy/2) to (xm+dx/2, ym+dy/2) of the final focused image.
In other words, we find the most repeatedly used image slice
to fill the pixels around the neighborhood of (xm, ym). We
should note here that every pixel in the final focused image
is obtained from one of the image in the stack. If none of
the pixels in the region are filled already, the pixel values for
this region is obtained from the image slice Im. Otherwise, we
fill the pixels values for all non-filled position in the region
with the pixels from mostly used image. Suppose image If is
the most frequently selected image slice in this region. Then,
we fill all the non-filled pixels in the region (xm-dx/2, ym-
dy/2) to (xm+dx/2, ym+dy/2) with the pixel values from If .
This process is repeated with the next highest HCRM value
until all the pixel positions are processed. At the end of the
procedure, we obtain a focused image which we refer to as Full
Harris Image (FHI). As more and more pixels are filled, the
neighborhood information comes into use more often. Using
the neighborhood information helps to maintain the spatial
consistency. Besides, by filling the pixels with high HCRM

values first, we ensure we pick the best focused pixels in the
final focused image.

The pseudocode for this algorithm is provided in Algo-
rithm 2. The algorithm takes image stack (I), neighborhood
size (dx, dy) and the HCRM threshold, and returns the final
focused image. The HCRM threshold is used to determine the
pixels we would like to fill in the focused image. Only the
pixels having HCRM values higher than the HCRM threshold
are filled on the focused image. The focused image obtained
using HCRM threshold 0 is called the Full Harris Image (FHI).
Using 0 as the HCRM threshold ensures that representative
pixels are determined for every pixel in the focused image.
Fig. 5(a) shows the focused image for the protein crystallization
trial image set shown in Fig. 1. The focused image has very few
discontinuities, and all the objects are in focus. Fig. 5(b) shows
the corresponding depth color image.

Algorithm 2 Generate final focused image
1: Input: I (Image stack), (dx, dy) (Neighborhood size) and

thresHCRM(HCRM threshold)
2: Output: Iharris (FHI or PHI)
3: Note: If thresHCRM = 0, Iharris is FHI, else Iharris is PHI
4:
5: procedure Iharris = GENIMGHARRIS(I, dx, dy, thresHCRM )
6: // Mi(x, y) is HCRM at pixel (x,y) for image Ii
7: ObjList = repHCRM(I) //See Algorithm 1
8: // Sort ObjList in descending order using HCRM value
9: Sort(ObjList, ′HCRM ′, ′Descending′)

10: //Create a 2D array to keep track of selected image
indices for each coordinate

11: track[ ][ ] = NULL
12: //Generate Harris image
13: for i = 1 to ObjList.size() do
14: x = ObjList[i].x
15: y = ObjList[i].y
16: if ( ObjList[i].HCRM ≥ thresHCRM ) then
17: //Find index of most repeated image (Algorithm 3)
18: modeIndx = findMode(x, y, dx, dy, track, |I|)
19: if ( modeIndx is NULL ) then
20: modeIndx = ObjList[i].imgIndex
21: end if
22: for p = -dx/2 to +dx/2 do
23: for q = -dy/2 to +dy/2 do
24: if ( track(x + p, y + q) is NULL ) then
25: track(x + p, y + q) = modeIndx
26: Iharris(x + p, y + q) = (MmodeIndx(x + p, y +

q)>thresHCRM)?ImodeIndx(x + p, y + q):NULL
27: end if
28: end for
29: end for
30: end if
31: end for
32: end procedure
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Algorithm 3 Find mode of representative images in the neigh-
borhood

1: Input:(x, y) (Pixel Position), (dx, dy) (Neighborhood size),
track (2D array of image size that keeps track of selected
image index for each coordinate, |I| (Number of images in image stack)

2: Output: modeIndx (Best representative image index at
(x,y))

3:
4: procedure modeIndx = FINDMODE(x, y, dx, dy, track, |I|)
5: //Find frequency of image indices in the neighborhood
6: countList[ ] = NULL
7: for p = -dx/2 to +dx/2 do
8: for q = -dy/2 to +dy/2 do
9: ( countList[track(x + p, y + q)] + + )

10: end for
11: end for
12: //Find the mode image indexes in the neighborhood,

return NULL if all count is 0
13: maxCnt = 0
14: modeIndx = NULL
15: for k = 1 to |I| do
16: if ( countList[k] > maxCnt) then
17: maxCnt = count[k]
18: modeIndx = k
19: end if
20: end for
21: end procedure

(a) Final focused image (b) Depth color image

Fig. 5: Applying basic FocusALL

4 ENHANCING FOCUSALL FOR HIGH RESOLUTION
AND VARYING ILLUMINATION IMAGES

Automatic microscopic systems generally capture images in
high resolution. The experts prefer to analyze the images in
their original resolution, since some information or details may
be lost after resizing or processing the images. As we men-
tioned in Section 2, focal stacking algorithms require process-
ing every pixel in the image. Hence, applying focal stacking
algorithms on high resolution images is time consuming and
tedious. In addition, since the intensity difference between
neighboring pixels is low in high resolution images, the ob-
jective function used for determining the clarity of the pixels
may fail for these images. To resolve this, we propose enhanced
FocusALL technique for high resolution images without signif-
icant sacrifice on the time efficiency of our algorithm.

Another challenge in focal stacking is that the lighting
conditions may change while capturing the images. If we apply
focal stacking on such image set, we may observe high discon-
tinuity in the focused image due to pixels picked from images
with different illumination. For such cases, basic FocusALL
generates a focused image with discontinuities and artifacts.
Therefore, we enhanced FocusALL to solve this problem.

4.1 FocusALL for High Resolution (FocusALL-HR)

As the resolution of an image increases, the intensity differ-
ence between two neighboring pixels decreases. Since HCRM
measures the change in intensity of neighbor pixels, edges and

(a) Focused image (b) Zoomed R1 (c) Zoomed R2

Fig. 6: Applying FocusALL to high resolution image

(a) (b)

(c) (d)

Fig. 7: Applying FocusALL-HR on a high resolution image. (a)
Focused image at base resolution, (b) Depth color image at base
resolution, (c) Enlarged depth color image, and (d) Focused
image at high resolution

corner pixels may not be properly detected in high resolution
images. Hence the basic FocusALL algorithm may not generate
desired focused images for high resolution images. Fig. 6(a)
shows the final focused image created by using basic FocusALL
with 1280x960 resolution. Two regions are highlighted and the
zoomed in versions are provided in Fig. 6(b-c), which shows
discontinuities in the final focused image.

To solve this issue, we propose FocusALL for high resolu-
tion images (FocusALL-HR) by enhancing the basic FocusALL
technique. We apply FocusALL on a base low resolution image
as an initial step to obtain focused image in high resolution.
The base resolution that FocusALL works properly with is
determined empirically. Firstly, depth color map of the base
resolution image is generated. Next, the depth color image is
resized from base resolution to high resolution using interpo-
lation. This step helps to generate appropriate depth color map
for high resolution image. Then, using the enlarged depth color
map and image slices in high resolution, final focused image
is generated. Fig. 7(a) shows the focused image of the base
resolution. Depth color map of the base resolution image is
shown in Fig. 7(b). Fig. 7(c) shows the depth color image of
high resolution image. Using the enlarged depth color map,
the focused image is generated (Fig. 7(d)).

4.2 FocusALL for Varying Illumination (FocusALL-VI)

Combining pixels from images with varying illumination to
generate smooth focused image is quite challenging. Like any
focal stacking algorithm, FocusALL also may not produce
proper focus for these types of images. Because of illumination
changes, the resulting focused image may consist of artifacts
and discontinuities. Fig. 13(c) shows a set of 6 images collected
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(a) Focused image with basic
FocusALL

(b) Depth color image

Fig. 8: Applying basic FocusALL on PC3

Fig. 9: Generating focused image for varying illumination

under different illumination. Here, the top two images in
Fig. 13(c) have high illumination, while the bottom four images
in Fig. 13(c) have comparatively lower illumination. Fig. 8
shows the final focused image after applying basic FocusALL.
Here, objects are in focus in Fig. 8(a). There are several discon-
tinuities and artifacts in the background. This is more obvious
in the depth color image (Fig. 8(b)). Discontinuities are critical
if they are observed inside object. We propose FocusALL for
varying illumination images (FocusALL-VI) by enhancing the
basic FocusALL technique for such cases.

Fig. 9 provides the basic flow of our proposed approach.
Firstly, partial Harris image is obtained which separates the
image pixels as object, background and holes. Next, images
with similar illumination are grouped under each cluster and
full Harris image is obtained from each cluster. To obtain the
complete focused image, object pixels are obtained from the
partial Harris image, holes are obtained using pixels from
neighboring object pixel image and background is filled using
the full Harris image. From k image clusters, we will have k
resulting focused images. The expert can select one of these
images as the best focused image.

4.2.1 Generate Partial Harris Image (PHI)
The main objective of generating partial Harris image (PHI)
is to get the best pixel values for the high contrast regions
such as edges and corners from the image set |I|. Partial Harris
Image (PHI) helps to distinguish high contrast object regions,

(a) Partial Harris image (b) Regions in PHI

Fig. 10: Identify objects, holes and background in PHI

low contrast background regions, and low contrast internal
object regions in an image. Normally, foreground regions are
expected to have high HCRM values, while the background
regions have low HCRM value. Using a threshold for HCRM
value, we can generate an image by filling the pixels with high
HCRM values only, which is called Partial Harris Image (PHI).
Inside of a smooth in-focus object may have low HCRM value
because of low intensity difference. Therefore, PHI may not fill
up the pixels for an entire object completely, and thus holes can
be present inside the objects. Fig. 10(a) shows the partial Harris
image for the image stack shown in Fig. 13(c). Here, the holes
are visible in all 3 regions in Fig. 10(a). PHI is generated using
Algorithm 2. The image stack (I), neighborhood size (dx, dy)
and HCRM threshold (thresHCRM ) are provided as input.
The procedure returns the PHI. Only the pixels having HCRM
value greater than thresHCRM are filled in PHI.

4.2.2 Identify objects, holes and background in PHI
The pixels in PHI are divided into 3 regions: object, hole and
background. All the object pixels in the PHI are clustered as
object. All black regions inside the object regions are clus-
tered as holes. Remaining region is clustered as background.
Fig. 10(b) shows the resulting image after distinguishing these
three regions. The object, hole and background regions are
indicated by green, black and red colors, respectively.

4.2.3 Cluster images using k-means
The images in image stack I are grouped using k-means cluster-
ing [25]. Firstly, intensity histogram is obtained for each image.
The intensity histogram is input to the k-means algorithm
as the features. The desired number of clusters should be
provided as input. Accordingly, the images are grouped into
each cluster. For the image set shown in Fig. 13(c), we applied
k-means clustering with intensity histogram with 25 bins and 2
clusters. Using this procedure, the first two images in Fig. 13(c)
fall under group G1, and the rest of the images in Fig. 13(c) fall
under group G2. In the next section, we will explain how we
generate full Harris image using these image groups.

4.2.4 Generate Full Harris Image (FHI)
To generate the final focused image, we follow the steps of
basic FocusALL with some modifications. We first calculate the
representative HCRM values. Then, we generate Full Harris
image (focused image) for each group using Algorithm 2. Here,
the image stack G1 or G2 are the input to the FHI generating
algorithm. Fig. 11(a) and Fig. 11(d) show the FHI generated
from group G1 and group G2 separately. Let the FHI generated
using group G1 be FHIG1 and the FHI generated using group
G2 be FHIG2. FHI images are used to fill regions of objects that
have smooth low contrast inside the object.
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(a) FHI with group G1 (b) Focused image with
G1

(c) Depth color image
of (b)

(d) FHI with group G2 (e) Focused image with
G2

(f) Depth color image of
(e)

Fig. 11: Results of FocusALL-VI

4.2.5 Generate final focused image
In this step, the 3 clustered regions, objects, background and
holes in the PHI are filled separately to generate final focused
image. Firstly, in the final focused image, the object regions
excluding the holes are obtained from the PHI. Next, the hole
regions, which are part of the object, are filled to get the
complete object regions. Getting hole regions from random
image may create discontinuity inside the object. Therefore,
for each pixel position (x,y) in hole region, we first find the
nearest object region by finding the image Ii from which the
object region pixel was obtained. Then, we fill the hole at
pixel position (x,y) using the pixel values at (x,y) from image
Ii. Finally, background regions should provide good contrast
with the complete object regions. Moreover, it is desired that
the background region should have spatial consistency. Hence,
these regions are obtained from either of the FHI (FHIG1 or
FHIG2) to generate final focused image. Fig. 11(b) shows the
final focused images using FHIG1 as the background region
and Fig. 11(c) shows the corresponding depth color image
representation. Similarly, Fig. 11(e) shows the final focused
image using FHIG2 as the background region and Fig. 11(f)
shows the corresponding depth color image representation.

5 EXPERIMENTS

In order to validate our FocusALL algorithm, we performed
experiments on 3 protein crystallization image test cases: PC1,
PC2 and PC3. The images for protein crystallization trial
sets were captured using the acquisition system described in
[1]. The images are collected at a resolution 2560x1920. Each
dataset consists of 6 images collected with different depths
of field. Our protein crystallization datasets contain random
scattered noise pixels. Thus, we apply median filtering with
window size 3x3 prior to applying focusing algorithms. Fig.
13(a), Fig. 13(b) and Fig. 13(c) provide the images after median
filter for the test cases PC1, PC2 and PC3, respectively. We
also evaluate the performance of our method on retinal pig-
ment epithelial (RPE) images. 1 There are 4 images in the RPE
image set provided in Fig. 13(d).

1. Images obtained from http://bigwww.epfl.ch/demo/edf/demo 5.html
(Courtesy of Peter Lundh von Leithner and Heba Ahmad, Institute of
Ophthalmology, London).

(a) Texture image (b) Mapping texture image to 3D
normal distribution

Fig. 12: Simulation of different focal depth on a texture image

For quantitative analysis of our algorithm, we created simu-
lated data of a texture image shown in Fig. 12(a). 2 To simulate
the images with different focal depth of a microscope from
a single image, we applied Gaussian smoothing for varying
depth of field. We first mapped the image to 3D normal
distribution model to create different focus level for a 2D
texture image (Fig. 12(b)). Then, using the height of each pixel
as a smoothing parameter, we applied smoothing partially for
different parts of the image. Fig. 13(e) shows the set of 6 images
with simulated different focal depths. The resolution of the
images is 320x240. The advantage with a simulated dataset is
that we have a ground truth image to compare the results with.

We compare the performance of our FocusAll technique
with other focusing algorithms. Vollath-F4 [6] has usually per-
formed well in diverse domains. Therefore, we choose Vollath-
F4 as the objective function for best-focused image selection
method. As a transformation based method, we choose the
complex wavelet transform (EDF-CWT) method since it pro-
vided good results in fluorescence microscopy [15]. To evaluate
this, we use the extended depth of field (EDF) plugin for
ImageJ application [15]. In addition to the EDF-CWT method
in the EDF program, we evaluate the results using Sobel based
method (EDF-Sobel), variance based method with window size
5 (EDF-Var5) and real valued wavelet transform (EDF-RW). For
the real wavelet method, we select the medium quality option
since it provided better result compared to the real wavelet
medium high quality option. For the FocusALL algorithm, the
default neighborhood size is 15x15 pixels. HCRM threshold
value is determined empirically and chosen as 20.

5.1 Low Resolution Image
For low resolution, we downsample the images in Fig. 13 to
320x240 and apply the focusing algorithms. The RPE images
are of size 321x256. Fig. 14 provides the focusing results using
different techniques on 4 image sets (PC1, PC2, RPE, SIM ).
The PC1 image set (Fig. 13(a)) has mainly 2 regions of interest
highlighted as region R1 in the 2nd and 3rd images, and region
R2 in the 6th image. In other words, R1 is best focused in
the 2nd or 3rd image, and R2 is best focused in the 6th image
of the set. The Vollath-F4 method selects the third image in
the input set as the best focused image. The selected image
has only one region in focus and the other region is barely
noticeable. The focused images using EDF-Sobel and EDF-
Var5 methods introduce significant noise in the final images.
Moreover, the region R2 is not clear. The focused images
using EDF-RW and EDF-CWT have both the regions in focus.

2. http://www.textureking.com/content/img/stock/big/DSC 3518.JPG
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a) PC1 b) PC2 c) PC3 d) RPE e) SIM

Fig. 13: Experimental dataset (images captured with different depths of field a)Protein images 1 (PC1), b) Protein images 2
(PC2), c) Protein images 3 (PC3), d) Retinal pigment epithelial (RPE) images, and (e) Simulated texture images

However, around the borders of region R1, there are noise
pixels and artifacts. The focused image using FocusALL has
the regions of interest in good focus and has a good contrast
with the background. Fig. 15 provides a zoomed in view of
region R1 from the focused images using EDF-RW, EDF-CWT
and FocusALL methods. The result from EDF-RW method
shows artifacts around the region. The EDF-CWT method
performed comparatively better than the EDF-RW method.
However, there is random noise around the object. The R1

region using FocusALL has smooth boundary of the object and
the discontinuity is minimized.

Fig. 14(b) provides the focusing results using different
techniques for PC2 (Fig. 13(b)). This image set has mainly 3
regions of interest represented as R1, R2 and R3. The region
R1 is best focused in the 4th image of the set. Similarly, regions
R2 and R3 are best focused in the 3rd image of the set. The
Vollath-F4 method selects the 3rd image from the set as the
best focused image. This image looks satisfactory although the
edges in regionR1 are not very sharp. The focused images from
EDF-Sobel and EDF-Var5 have additional layers in R1 region.

There are lots of noise pixels around the regions of interest and
the objects are distorted. The EDF-RW and EDF-CWT methods
perform reasonably well on this image set. However, if we look
closer on R1 region, we can see additional layers around the
borders of the object. In the focused image from FocusALL
method, all the regions of interest are clear. The edges of the
objects are more noticeable compared to other results.

To analyze the performance of our method on image set
from different domain, we selected the retinal epithelial images
(Fig. 13(d)). On this image set, it is difficult to select the
regions of interest. However, we can see the blurred regions
in the input images. By combining the in-focus pixels from
different images, we want to have sharp focus throughout the
image. Fig. 14(c) provides the focusing results using different
techniques. Here, instead of showing the regions of interest,
the major problematic regions in the result images are high-
lighted. The focusing result using Vollath-F4 has the most
blurred regions. The EDF-Var5 method has the best result.
Other methods, EDF-Sobel, EDF-RW, EDF-CWT and FocusALL
have relatively small blurred regions. All these methods result
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Fig. 15: Comparison of region R1 in focused images on PC1

(a) EDF-RW, (b)EDF-CWT, and (c) FocusALL

in a good focused image compared to any single image in the
input set.

On the simulated dataset (Fig. 13(e)), each image has dif-
ferent regions blurred. It is difficult to show the regions of
interest in this set. By applying the focusing algorithms, we
expect to obtain the original image shown in Fig. 12(a). We
can evaluate the focusing methods by comparing the resulting
focused images with the original texture image. Similarly, we
can also analyze the clarity of details and overall image sharp-
ness. Fig. 14(d) provides the focusing results with different
techniques. For each image, the problematic regions are shown
in rectangular box. The outcome using best image selection
method with Vollath-F4 is the most problematic. A large por-
tion of the resulting image is out of focus. Similarly, the results
with EDF-RW and EDF-CWT methods have large regions that
are out of focus. The focused images with EDF-Sobel and
our FocusALL (neighborhood size 3x3) have small blurred
regions in different parts of the images. Nevertheless, these are
satisfactory results and does not affect the details in the images
very much. The focusing outcome with EDF-Var5 has the least
image portion that is out of focus. Therefore, variance method
provides the best outcome, and the results from EDF-Sobel and
FocusALL methods are of acceptable quality.

5.2 High Resolution Image
To evaluate the performance of our method on high resolution
images, we applied FocusALL-HR on PC1 and PC2 image sets
at 1280x960 resolution. Fig. 16 provides the focusing results
on PC1 and PC2 for different techniques. To highlight the
problems, only the region R1 is provided for both the image
sets. Since the best image selection method does not benefit
from focused regions in different image slices, the result from
best image selection method is not provided. Likewise, the
EDF-CWT method performed better compared to the EDF-
RW method. Therefore, the result from EDF-RW is not shown.
The EDF-Sobel and EDF-Var5 methods introduce significant
noise around the objects. This can be observed in Fig. 16(a)-
(b) and Fig. 16(e)-(f). It is difficult to distinguish the object
boundary because of several artifacts around the object. This
is true for both the image sets. The result from EDF-CWT
method and FocusALL-HR provide good contrast between the
foreground and background. For PC1, the result from EDF-
CWT and FocusALL are similar. On PC2, the EDF-CWT has
some noise on the border of the object (Fig. 16(g)). FocusALL
performed better on this data as the edges are clear, and the
noise around the object is less. The outputs of EDF-RW, EDF-
CWT, and FocusALL on low-resolution images look to be like
the lower resolution of outputs generated from high resolution
images. When EDF-Var5 and EDF-Sobel are applied on a high
resolution image, it was observed that the outputs had more
noise than the low resolution outputs.

In terms of the computation time, the Vollath-F4 best image
selection (Vollath-F4), Sobel-based (EDF-Sobel), variance-based
(EDF-Var5) and FocusALL methods complete in similar times.
On a Windows 7 Intel Core i7 CPU @2.8 GHz system with
4 GB memory, the processing time for all these methods for
1280x960 image resolution was less than 10 seconds. The EDF-
RW method took around 20 seconds to process the same res-
olution while the EDF-CWT method took around 40 seconds.
As the image resolution goes higher, the computation time for
the RW and CWT methods increases significantly. For image
resolution 2560x1920, the CWT technique takes at least 10
minutes to generate the focused image. The complexity of the
FocusALL algorithm does not increase with the increase in
image resolution. This is because the main processing is done
in base resolution. The depth color image obtained for base
resolution is enlarged to determine the pixel selection on the
desired high resolution.

5.3 Varying Illumination Images
We considered the protein crystallization image set PC3 shown
in Fig. 13(c) for evaluating algorithms with respect to varying
illumination. This test case has 3 regions of interest. The image
resolution is 320 x 240. As explained in Section 4, the images
were grouped into 2 clusters by applying K-means clustering
on intensity histogram. Accordingly, first two images were
grouped into cluster 1 and the remaining images into cluster
2. The results of FocusALL-VI and comparison with other
techniques are provided in Fig. 17.

Using the best-focused image selection method using
Vollath-F4, the second image in the set (Fig. 17(a)) is selected
as the best focused image. Here, the regions R1 and R3 are in
good focus but region R2 could be improved if it were picked
from the 4th image in the set. Using the Sobel technique, the
resulting image shown in Fig. 17(b) introduces significant noise
throughout the image. The focused images using the variance
method (EDF-Var5) (Fig. 17(c)), real wavelet (EDF-RW) (Fig.
17(d)) and complex wavelet method (EDF-CWT) (Fig. 17(e)) all
have dark regions around regions R1 and R3. The problematic
regions are marked by red rectangle. For the FocusALL-VI, we
had 2 clusters. Therefore, there are 2 focused images shown
in Fig. 17(f) and Fig. 17(g). Using this method, all 3 regions
are in good focus. The image in Fig. 17(g) looks better than
the image in Fig. 17(f) since it does not have an artificial
boundary around the large object region R2. The expert can
make selection among the two images for further analysis. We
also performed experiments on varying illumination for high
resolution images and get results similar to Fig. 17(a-g). The
region R2 for varying illumination on high resolution images
are shown for EDF-Var5, EDF-RW, EDF-CWT, and our Fo-
cusALL (from G2 cluster) techniques in Fig. 17(h-k). FocusALL
generates sharper object regions than EDF-RW and EDF-CWT,
and it does not have the noisy regions in the background as in
EDF-Var5. FocusALL may generate artificial boundaries in the
final focused image. Therefore, if the accuracy of the complete
image is more critical than individual in-focus regions, EDF-
RW may be preferred to FocusALL.

5.4 Quantitative analysis
For quantitative analysis of FocusALL method, we use PSNR
(Peak Signal to Noise Ratio). A high PSNR value is expected
for a proper focused image. PSNR is calculated as in 4:



11

Vollath-F4

EDF-Sobel

EDF(Var5)

EDF-RW

EDF-CWT

FocusALL
a) PC1 b) PC2 c) RPE d) SIM

Fig. 14: Focusing results using different techniques (a) Protein crystallization images 1 (PC1), (b) Protein crystallization images
2 (PC2), (c) Retinal pigment epithelial (RPE) images, and (d) Simulated texture images

PSNR = 20 ∗ log10(Pmax/
√
MSE) (4)

where

MSE =
1

WH

W∑
i=1

H∑
j=1

[X(i, j)− Y (i, j)]2 (5)

In 5, X is the original image (expected image), Y is the focused
image by using any algorithm, and Pmax is the maximum pixel
value of image X.

Table 2 gives the PSNR results for 3 simulated data sets
using different techniques. The table shows that best-focused
image selection method performs the worst as its PSNR value
is the lowest. The EDF-RW and EDF-CWT have similar perfor-
mances. The PSNR value is the highest for EDF-Var5 among all
methods. Our FocusALL performs the second best after EDF-

Var5. This shows that our technique performs reasonably well
on the simulated datasets as well.

TABLE 2: PSNR values in dB for different focusing techniques

Method Texture 1 Texture 2 Texture 3
Vollath-F4 63.9 59.8 61.3
EDF-Sobel 66.9 63.9 65.3
EDF-Var5 69.2 65.1 67.3
EDF-RW 66.0 63.4 65.3
EDF-CWT 65.8 63.2 65.2
FocusALL 68.0 63.8 65.9
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Fig. 16: Comparison of focusing results on high resolution (a)-(d) Results on region R1 of PC1 dataset, and (e)-(f) Results on
region R1 of PC2 dataset

5.5 Comparison of different methods

It is difficult to have a focal stacking algorithm that works well
for images in diverse domains. Manually selecting the methods
and tuning the parameters for each image can be tedious
and time consuming. Therefore, for automated systems, it is
desirable to select a method that works well for most of the
images for the particular problem. Our FocusALL method
provided the best results on the protein crystallization images,
and also generated reasonably good results on other datasets
such as the retinal epithelial dataset and the simulated datasets.

In the experiments provided earlier, Vollath-F4 method
picks up the overall best image from a given image set. The
main problem for other methods is to pick up the best pixel
for each pixel position. While CWT and RWT use wavelet
coefficients, Sobel and variance use intensity change within
neighborhood. Our method utilizes corner information to se-
lect the best pixel. For the discontinuity problem, CWT method
checks consistency in sub-bands and spatial context (3x3 neigh-
borhood). FocusALL method uses a window to fill the regions
around a corner. In addition, the window size in FocusALL is
used to deal with blurriness caused by high-intensity regions.
These choices are the major differences between the techniques.
If a method does not perform well for a specific data set, the
pixel selection strategy and/or dealing with the discontinuity
problems by that method does not work well for that data set.

The best image selection method using Vollath-F4 [6]
method performed well based on visual inspection on PC2 but
poorly on the other image sets. In PC2, there are 3 regions all
of which are clearly focused in the 4th image in the set. In this
method, the best image in the set is selected. Since the pixels
come from the same image, there is no discontinuity problem.
Vollath-F4 has been proven to be an effective objective function
for sharpness in many domains; however it requires at least
one image to contain all objects in focus.

Focal stacking algorithms benefit by combining the infocus
pixels in different images to get a clear composite image.
However, the focal stacking algorithms have added complexity
and chances for discontinuities in the final focused image
compared to the best image selection method. We evaluated the

Sobel, variance, real wavelet transform, and complex wavelet
transform based focal stacking available in Extended Depth
of Field (EDF) [15] in our experiments. The Sobel technique
worked well on the retinal epithelial image set and simulated
datasets. However, the results were poor on protein images.
Likewise, on the protein crystallization images, the complex
wavelet transform method performed good for some images
while several discontinuities and artifacts were produced in
other images. This method performed reasonably well on
the simulated data and the retinal epithelial data. On simple
images all methods perform well. However, if images have
artifacts that affect the neighboring pixel values in an image,
the basic methods such as Sobel and variance start to perform
poorly. EDF-RWT, EDF-CWT, and FocusALL can handle image
datasets with complexities due to blurring of pixels better than
Sobel and variance methods. However, EDF-RWT and EDF-
CWT cause an additional layer or border around the high
intensity regions.

The window size in FocusALL helps to deal with an artifact
similar to diffused reflection that causes intensity and contrast
increase in low intensity and low contrast regions next to high-
intensity regions. This phenomenon occurs especially when
the corresponding high-intensity region is out of focus. In our
protein crystallization experiments, the default window size
is 15x15 and FocusALL copes better than other techniques. If
such an artifact is not part of the image set, the window size
can be reduced to even 1x1.

FocusALL is more versatile than the other techniques as it
can provide either the best or as good as the best technique for
all experiments in this paper. It did not fail for any experiment
while others did not provide good results for some of our
protein crystallization experiments. FocusALL also produced
reasonably good results on the retinal epithelial image set and
the simulated datasets. Our proposed FocusALL-HR produces
focal stacking results on high resolution images in a reasonable
time. Similarly, our FocusALL-VI can deal with images of
varying illumination. The modifications on the basic method
are generic and hence can be applied on other focal stacking
algorithms to improve the accuracy and computational time.
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(a) Vollath-F4 (b) EDF-Sobel (c) EDF-Var5

(d) EDF-RW (e) EDF-CWT (f) FocusALL-VI (FHIG1) (g) FocusALL-VI (FHIG2)

(h) R2 with EDF-Var5 (i) R2 with EDF-RW (j) R2 with EDF-CWT (k) FocusALL-VI (FHIG2)

Fig. 17: Varying illumination results on PC3 (Fig. 13c), (a)-(g) Results on low resolution (320x240), and (h)-(k) Region R2 in high
resolution (1280x960)

6 CONCLUSION

In this paper, we introduced a new focal stacking technique
called FocusALL. FocusALL tackles two important assump-
tions that are not always true: a) high contrast regions belong
to in focus regions and b) high intensity regions belong to in
focus regions. Focal stacking techniques may yield disconti-
nuities in the final image. FocusALL method minimizes the
discontinuities by using neighborhood information.

We enhanced our FocusALL to overcome the limitations of
focal stacking algorithms caused by high resolution and vary-
ing illumination images. Our FocusALL method together with
the enhanced FocusALL methods performed the best results on
the protein crystallization images. Besides, it produced reason-
ably good results on the retinal epithelial dataset and the simu-
lated datasets. Moreover, FocusALL can generate good in-focus
images to deal with focal stacking on high resolution images in
a reasonable time (< 10 seconds) while some methods generate
results in minutes. Our proposed FocusALL-VI can also deal
with images of varying illumination. For varying illumination
images, although FocusALL generates sharp object regions, it
may introduce artificial boundaries in the output image. In
future work, we plan to identify these boundaries in the image
and propose solutions for removing these artificial boundaries.
Moreover, we plan to evaluate our FocusALL technique on
other domains such as other microscopic images (e.g., cellular
images) and macro-photography images.
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[13] J. Mateos-Pérez et al. Comparative evaluation of autofocus algorithms
for a real-time system for automatic detection of mycobacterium
tuberculosis. Cytometry Part A, 81(3):213–221, 2012.

[14] A. Valdecasas, D. Marshall, J. Becerra, and J. Terrero. On the ex-
tended depth of focus algorithms for bright field microscopy. Micron,
32(6):559–569, 2001.

[15] B. Forster, D. Van De Ville, J. Berent, D. Sage, and M. Unser. Complex
wavelets for extended depth-of-field: A new method for the fusion of
multichannel microscopy images. Microscopy Research and technique,
65(1-2):33–42, 2004.

[16] R. Dendere, O. Osibote, S. Krishnan, and T. Douglas. Image fusion for
autofocusing in fluorescence microscopy for tuberculosis screening.
In Biomedical Imaging: From Nano to Macro, 2011 IEEE International
Symposium on, pages 1383–1386. IEEE, 2011.

[17] A.S. Sugimoto and Y. Ichioka. Digital composition of images with
increased depth of focus considering depth information. Applied
optics, 24(14):2076–2080, 1985.

[18] N.T. Goldsmith. Deep focus; a digital image processing technique to
produce improved focal depth in light microscopy. Image Anal Stereol,
19:163–167, 2000.

[19] P. Hill, C. Canagarajah, and D. Bull. Image fusion using complex
wavelets. In BMVC, pages 1–10. Citeseer, 2002.

[20] J. Lewis, R. O’Callaghan, S. Nikolov, D. Bull, and N. Canagarajah.
Pixel-and region-based image fusion with complex wavelets. Informa-
tion fusion, 8(2):119–130, 2007.

[21] W. Shi, C. Zhu, Y. Tian, and J. Nichol. Wavelet-based image fusion and
quality assessment. International Journal of Applied Earth Observation
and Geoinformation, 6(3):241–251, 2005.

[22] S. Li, B. Yang, and J. Hu. Performance comparison of different multi-
resolution transforms for image fusion. Information Fusion, 12(2):74–
84, 2011.

[23] S. Li and B. Yang. Multifocus image fusion by combining curvelet and
wavelet transform. Pattern Recognition Letters, 29(9):1295–1301, 2008.

[24] H.P. Moravec. Obstacle avoidance and navigation in the real world
by a seeing robot rover. Technical report, DTIC Document, 1980.

[25] J.A. Hartigan and M.A. Wong. Algorithm as 136: A k-means clustering
algorithm. Applied statistics, pages 100–108, 1979.

Madhu S. Sigdel received his Bachelor’s
Degree in Computer Engineering from In-
stitute of Engineering, Kathmandu, Nepal
in 2011, and a M.S. degree in Computer
Science from the University of Alabama in
Huntsville in 2014. His M.S. thesis is related
to focal stacking and autofocusing of micro-
scopic images. His research interests include
image processing, computer vision and data

mining.
Madhav Sigdel received the Bachelor’s

Degree in Computer Engineering from Pul-
chowk Campus, Kathmandu, Nepal in 2008,
and the M.S. and Ph.D. degree in Computer
Science from the University of Alabama in
Huntsville in 2012 and 2015, respectively.
His Ph.D. thesis is related to real-time pro-
tein crystallization image analysis. His re-
search interests include data mining, com-

puter vision, multimedia systems, and information visualiza-
tion.

Semih Dinc is a Ph.D. student at Com-
puter Science Department in University of
Alabama in Huntsville since 2012. He re-
ceived his B.S. degree in Computer Science
at Dokuz Eylul University in 2004, and his

M.S. degree in Control Engineering at Yildiz
Technical University in 2012. His research
areas are computer vision, image process-
ing, and pattern recognition. He is recently

studying vision based trajectory tracking system for mobile
robots.

Imren Dinc is a Ph.D. student at Com-
puter Science Department, University of Al-
abama in Huntsville, and working as a GRA
since 2013. She received her B.S. degree
in computer engineering from Dokuz Eylul
University, Turkey in 2012 with first rank in
the department and an honor degree. She
is currently studying experimental design
for protein crystallization experiments and
visualization. Her research areas are data

mining, image processing, and pattern recognition.
Marc L. Pusey is a research scientist

working at iXpressGenes, Inc., Huntsville
Alabama. Dr. Pusey received his Ph.D. in
Biochemistry from the University of Mi-
ami, Fl., then did post-doctoral research
at the University of Minnesota. He moved
to Huntsville in 1985, and worked at
NASA/MSFC for the next 23 years in the
new field of protein crystal growth. After
retirement from NASA, he obtained his cur-
rent position at iXpressGenes with the focus

of his research being improved methods for protein crystal
screening, crystal detection, and crystallization condition iden-
tification using visible fluorescence methods.

Ramazan S Aygün: received the B.S. de-
gree in computer engineering from Bilkent
University, Ankara, Turkey in 1996, the M.S.
degree from Middle East Technical Univer-
sity, Ankara in 1998, and the Ph.D. degree
in computer science and engineering from
State University of New York at Buffalo in
2003. He is currently an Associate Professor
in Computer Science Department, Univer-
sity of Alabama in Huntsville. His research

interests include protein crystallization image analysis, data
mining, image and video processing, spatio-temporal index-
ing and querying, multimedia databases, semantic computing,
multimedia networking, and multimedia synchronization.




