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ABSTRACT 

Sequence similarity search and sequence alignment methods are 

fundamental steps in comparative genomics and have a wide spec-

trum of application in the field of medicine, agriculture and environ-

ment. The dynamic programming sequence alignment methods pro-

duce optimal alignments but are impractical for a similarity search due 

to their large running time. Heuristic methods like BLAST run much 

faster but may not provide optimal alignments. In this paper, we intro-

duce a novel sequence alignment algorithm, SEAL. SEAL is a paral-

lelizable algorithm that does not require gap penalty parameter as in 

heuristic methods. SEAL uses a combination of divide-and-conquer 

paradigm and the maximum contiguous sub-array solution. SEAL is 

also improved by the use of borders in every contiguous segment. 

The alignment scores obtained by SEAL are consistently higher than 

those obtained by heuristic methods. Since the dependencies are 

minimized among intermediate steps, the complexity of SEAL can be 

reduced to Θ(log2 𝑛) in the presence of satisfactory number of parallel 

processors. 

1 INTRODUCTION  

Comparative genomics enables functional annotation of genes by 

comparing genes of different species. A sequence similarity search 

is an integral step in comparative genomics and proteomics. Se-

quence similarity search helps us identify similar DNA or protein 

sequences from the same or different species. 

A sequence similarity search lines up sequences using sequence 

alignment methods to compare them and identify regions of similar-

ity between a given query sequence and chosen database. Dynamic 

programming is a well-known method for sequence alignment and 

gives the highest scoring alignment between two sequences. Heuris-

tic methods are less time-consuming and give good alignments. The 

most popular heuristic tool is BLAST (Basic Local Alignment 

Search Tool). BLAST gives good alignments in a reasonable 

amount of time but misses some sequences in the search process due 

to its strict parameters.  

Dynamic programming algorithms provide the highest scoring 

alignments (Shpaer; 1996) and the number of false positives and 

false negatives is proven to be significantly lower than heuristic 

methods (Pearson; 1995).  Therefore, there is a high risk that many 

sequences that are readily detected by Dynamic Programming algo-

rithms may be missed by heuristic approaches like BLAST. Dy-

namic programming algorithms give optimal alignments between 

two sequences whereas BLAST search results may not necessarily 

be optimal and heuristic approaches give more than one alignment 

  
 

for a single database sequence compared. In cases where the search 

is focused on remote homology, heuristic methods may miss certain 

sequences. But time complexity for dynamic programming algo-

rithms is high since an optimal alignment is obtained only after the 

whole matrix is filled (the number of cells in the matrix is the prod-

uct of the lengths of the two sequences).  

As sequence databases are increasing rapidly on a daily basis, par-

allelizing alignment methods to increase the speed and performance 

of search is gaining importance. There are various approaches used 

for parallel sequence alignment and search. Parallel approaches can 

be used at various stages: processing of input query sequences (i.e., 

each processor works on a subset of the query set), alignment algo-

rithm (i.e., parallel version of the alignment algorithm is developed), 

and/or searching database sequences (Mathog; 2003) (i.e., each pro-

cessor searches in a specific portion of the database). Most methods 

are feasible by the use of unique hardware like shared memory mul-

tiprocessors, systolic arrays (White; 1991), Blue Gene/P architec-

ture (Lin; 2008), grid computing (Krishnan; 2005) and more. 

BLAST++ (Wang; 2003)[6], SOAP-HT Blast (Wang, Mu; 2003) 

and similar methods employ parallel processing of input query se-

quences. pioBLAST uses dynamic partitioning of databases (Lin; 

2005). HBLAST (O’Driscoll et al., 2015) utilizes Hadoop architec-

ture based on MapReduce framework using virtual partitioning con-

cept for parallel sequence alignment. In (Dai; 2012), a cloud based 

service is provided using the Map-Reduce Framework for the short 

read mapping and storing reference genomes in Hbase. Bwasw-

Cloud (Sun; 2014) extends BWA-SW algorithm using open source 

implementation of Map-Reduce framework. The Map phase per-

forms alignment with respect to each reference chunk by extending 

around the reference; the Shuffle phase clusters alignment locations 

for each read output; and the Reduce phase combines the alignment 

locations with the same reads. BWA-ST (Li; 2010) follows seed-

and-extend paradigm but finds the seeds using dynamic program-

ming. Parallel methods based on BLAST also have the low sensitiv-

ity problem of BLAST.  

There are a number of pairwise alignment algorithms. AlignMe 

(Stamm et al., 2014) provides pair-wise sequence-to-sequence 

alignment using the standard Needleman-Wunsch algorithm. It has 

four optimized parameter set: AlignMe PST, AlignMe,PS, Align Me 

P, and Fast. The letters (P, S, T) along with the algorithm correspond 

to the required inputs for the alignment where P, S, and T indicate 

position-specific substitution matrix, a secondary structure predic-

tion, and a transmembrane prediction, respectively. AlignMe PST, 

PS an7d P work with distantly related proteins (with sequence iden-

tity <15%), low-homology proteins sequence similarity (~15%-
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45%), and closely related proteins (>45%), respectively. According 

to their experiments, AlignMe PST provided 1.8-7.5% more cor-

rectly aligned positions than HMAP (Soding, 2005) or HHalign 

(Huang and Miller, 1991). AlignMe produced 6.5% more correct 

alignment than HMAP, and AlignMe P provides 4.1% more correct 

aligned positions than HMAP. AlignMe P, PS, and PST use PSI-

BLAST to generate a position-specific substitution matrix. AlignMe 

Fast avoids the PSI-BLAST search in the other versions. WHAM 

(Li et al., 2012) is designed for short-read alignment problem. The 

sequence is represented in binary format as bits by mapping each 

nucleic acid to a binary number. The pairwise alignment is applied 

on binary representation. Since scoring is not part of this algorithm, 

it is assumed that WHAM targets exact match with errors of substi-

tutions, insertions, and deletions. Choi et al. propose PROVEAN 

(Choi, 2012), a fast computation of pairwise sequence alignment 

based protein sequence variations. Their proposed algorithm takes 

O((n+l).m) time where n and m correspond to the length of se-

quences and l is the number of variations if the length of variations 

is constant. It is assumed that two sequences differ in a small con-

tiguous region. MC64-NW/SW (Díaz et al., 2011) method redesigns 

Needleman-Wunsch/Still-Waterman (NW/SW) algorithm that ob-

tains optimal sequence alignment in quadratic time and space cost 

for parallelization to yield in O(m+n)  complexity. 

European Bioinformatics Institute (EMBL) (Li et al., 2015; 

McWilliam et al., 2013) provides a number of database, tools and 

services. Their sequence alignment services 

(https://www.ebi.ac.uk/Tools/psa/) include Lalign, EMBOSS tools 

(matcher (based on Lalign), needle (Needleman-Wunsch), stretcher 

(modified Needleman-Wunsch), water (modified Smith-Water-

man)), and the Wise2 tools (GeneWise, PromoterWise and 

Wise2DBA). Their sequence similarity search services 

(https://www.ebi.ac.uk/Tools/sss/) include FASTA, SSEARCH 

(based on Smith-Waterman) PSISearch (using PSI-BLAST and 

Smith-Waterman), GGSEARCH (global-global alignment), 

GLSEARCH (global query -local database alignment), 

FASTM/S/F, NCBI BLAST, PSI-BLAST, WU-BLAST, and ENA 

Sequence Search (faster than BLAST for large datasets but with 

marginal loss of sensitivity).  

Divide-and-Conquer methods have been applied to sequence 

alignment in the past. The recurrence relation of a divide-and-con-

quer algorithm can generally be represented as T(n)=aT(n/b)+f(n). 

While (n/b) is related to the size of the sub-problem to be solved, the 

coefficient a indicates the number of sub-problems to be solved. The 

function 𝑓(𝑛)usually indicates the time to combine the solutions of 

sub-problems. The function 𝑓(𝑛) plays critical role in the complex-

ity of a divide-and-conquer method. If 𝑓(𝑛) has a polynomial com-

plexity of 𝛩(𝑛𝑐), the best complexity (using Master Theorem) is 

obtained when log𝑏 𝑎 < 𝑐 and the complexity becomes 𝑂(𝑛𝑐). Pref-

erably, fast parallel algorithms should have a low value for the co-

efficient a (e.g., 1), and a high value for the coefficient b to reduce 

the size of the sub-problems. However, even for the best combina-

tion of coefficients a and b, the complexity of the method is dictated 

by 𝑓(𝑛) ∈ 𝑂(𝑛𝑐). Ultimately, to make divide-and-conquer efficient, 

the complexity of 𝑓(𝑛) should be reduced.  

In the literature, there are a good number of applications of divide-

and-conquer for sequence alignment. One application area is multi-

ple sequence alignment. One of the key ideas in algorithms proposed 

in (Stoye, 1998), (Stoye et al., 1997), (Tönges et al., 1996), (Stoye, 

1997) is that alignment problem can be divided or sliced based on 

the center or a reference index position of one of the strings. Then 

the question becomes finding out the position where other strings 

meet with the center of the first string. After those positions are 

found, the alignment can be divided into two sub-problems: align-

ment up to the mid-point of the first string and alignment after the 

mid-point of the string. These algorithms are based on dynamic pro-

gramming. If no optimization has been done, the time complexity of 

these algorithms is 𝑂(𝑛2) related to the cost of finding correspond-

ing positions in the other strings. A speed-up (Jones and Pevzner, 

2004) is provided by block alignment at the coarser level and using 

a lookup table. The matrix is divided into (n/t) by (n/t) blocks. Mini-

alignment is applied to each block at the cost of 𝑂(𝑡2). However, 

this still leads to complexity of 𝑂(𝑛2). The complexity of mini-

alignment is reduced to 𝑙𝑜𝑔 𝑛 using a lookup table and setting t to 

𝑙𝑜𝑔 𝑛. The complexity is then reduced to 𝑂(𝑛2/𝑙𝑜𝑔𝑛). At its core, 

it is still a dynamic programming approach but starts at the coarser 

block level. Ideally, to improve divide-and-conquer methods, 𝑓(𝑛) 

should be minimized without affecting coefficients a and b in the 

recurrence relation. 

Although a number of algorithms are developed to parallelize the 

alignment algorithm, they still face some limitations. For example, 

in dynamic programming methods, the computation of a value in the 

matrix depends on the computation of values in the neighboring 

cells. Due to this, parallelization is significantly limited. Heuristic 

approaches have also limitations. For example, parameters such as 

gap penalty should be defined by the user. Developing faster ap-

proaches based on these methods will again face similar problems. 

Heuristic approaches find hits and explore these hits to expand the 

matching sequence heuristically based on some parameters provided 

by the user.  For divide-and-conquer problems, there is a limit on 

how further the problem can be divided into sub-problems. Even 

with the availability of all the processing power, there is a theoretical 

limit because of the number of levels a problem can be divided into 

sub-problems due to the dependency between sub-problems. There-

fore, an alternate reasoning about alignment is required.  

This work introduces a novel parallelizable and sensitive method 

for sequence alignment called SEAL (SEquence ALignment). 

SEAL integrates the advantages of divide-and-conquer paradigm 

and the maximum contiguous sub-array solution. Divide-and-con-

quer divides the alignment search space between two sequences into 

smaller parts and the maximum contiguous sub-array solution finds 

locally optimal sequences. Given an array of integers, the maximum 

contiguous sub-array solution attempts to find the sub-sequence of 

consecutive integers which have the highest sum. The method finds 

the maximum contiguous segment in the whole search space initially 

and then uses divide-and-conquer to recursively find such segments 

in the prefix and suffix spaces. It provides a complete alignment of 

two sequences where locally optimum sub-sequences are joined 

with gaps. In an improved version of SEAL called iSEAL, each con-

tiguous segment is further divided using borders and the segments 

outside the borders are re-explored.  This work focuses on compar-

ing protein sequences. Since our method minimizes dependencies in 

the intermediate steps, the time complexity can be reduced to 

Θ(log2 𝑛) in the presence of satisfactory number of parallel proces-

sors. The major advantage of our method its paralleizable nature. 

Three components of SEAL are parallelizable: a) submatrices, b) the 

diagonals, and c) maximum contiguous subarray. In our method, the 

sub-problems (the maximum contiguous sub-array) can further be 

solved as divide-and-conquer problems. Our major contribution is 
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to increase the parallel components of the alignment algorithm with-

out sacrificing the accuracy of the algorithm. 

This paper is organized as follows. The following section pro-

vides the overview of our methodology. Section 3 explains our al-

gorithms. Section 4 analyzes experiments and complexity of our 

methods. The last section concludes our paper. 

2 SYSTEM AND METHODS 

The objective of our method is to design a parallelizable sequence 

alignment method which is much more sensitive to distant relation-

ships than existing heuristic methods. SEAL is a novel sequence 

alignment method which combines maximum contiguous sub-array 

solution and divide-and-conquer approach. The maximum contigu-

ous sub-array solution finds the longest consecutive positive inte-

gers given an array of integers. It begins by exploring the entire 

search space and then recursively explores sub-spaces. A maximum 

contiguous sub-array solution is applied to each diagonal array in a 

search space and scores are calculated. Scores of contiguous seg-

ments are compared to find the maximum segment for that search 

space. The prefix and suffix sub-regions of this segment are ex-

plored recursively for maximum scoring segments in those regions 

and sub-regions (Fig. 1). The process continues until the search 

space spans a single cell. The basic divide-and-conquer methodol-

ogy used in SEAL is presented in Fig. 2. Borders are introduced to 

each maximum contiguous segment in an improved version of 

SEAL called iSEAL. BLOSUM62 amino acid scoring matrix is used 

in this method.  

 

 

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

                

 

 

Fig. 1. Prefix and suffix regions to be analyzed after finding a good 

matching sequence. 

  

Divide-and-Conquer 

The challenging component of SEAL is to divide the alignment 

problem into subproblems such that the outcomes of these subprob-

lems can be solved independently and then merged to find the align-

ment. We have the following observations: 

1. A good matching sequence corresponds to a diagonal in the 

matrix whereas horizontal or vertical matching corresponds 

to a gap in the query or database sequence.  

2. If there is a good matching sequence without any gaps, the 

corresponding segments from the sequences will not be used 

again for alignment. 

The initial subproblem turns into finding the maximum subarray 

problem. The maximum subarray problem is the task of finding the 

subsequence that has the highest sum of its consecutive values. The 

number of diagonals for a query sequence of m and a database se-

quence of n is (m+n-1). Note that each diagonal is a 1-dimensional 

sequence of values (scores between corresponding amino acids 

based on BLOSUM62 matrix).  

After finding the best maximum contiguous array among all di-

agonals, this matching sequence divides the problem into 3 regions: 

diagonal region, suffix, and prefix. This further helps us eliminate 

all the regions that can be aligned with the identified matching re-

gion. The suffix and prefix regions are the next areas to be explored 

(Fig. 1).  

 

 
Fig. 2.  Divide-and-Conquer exploration with maximum contigu-

ous subsequence in each sub-matrix. 

 

Note that our algorithm introduces gaps naturally into the result so 

that the user does not need to worry about selecting a gap parameter. 

3 ALGORITHM 

The basic steps involved in SEAL are as follows: 

 

SEAL (M X N Matrix) 

#Input: A M X N matrix. M and N are the lengths of query and #da-

tabase sequences respectively 

#Output: An alignment of the query and database sequence. 

Step 1. Create a matrix of BLOSUM scores for the given query 

and database sequence. Divide M X N matrix into diago-

nals. 

Step 2. Find the maximum contiguous sub-array for each diago-

nal of M X N matrix.   

Step 3. Compare the scores of all the maximum contiguous seg-

ments for each diagonal and find the highest scoring seg-

ment for that matrix. 

Step 4. Divide the matrix into two sub-matrices covering the pre-

fix and suffix search spaces of the highest scoring seg-

ment. Sub-matrix1 spans cell [0, 0] to the start coordinates 

of the highest scoring segment. Sub-matrix2 occupies the 

search space from end coordinates of highest scoring seg-

ment to cell [M, N].  Repeat Step 1 to Step 3 for sub-ma-

trices. 

Suffix  

Prefix  



 

 

Step 5. Repeat Step 1 to Step 4. The recursion stops when the ma-

trix or sub-matrix has no positive scores or it reaches the 

ends of the matrix. 

Step 6. The highest scoring segments from all the sub-matrices 

are joined and padded with gaps to make the final align-

ment. 

Borders  

The original SEAL algorithm introduces challenges about the 

length of the segment. Usually longer matching sequence is pre-

ferred to shorter sequence matching sequence. However, this may 

also eliminate some good segments to be matched. Assume that a 

sequence such as [1, 1, 1, 5, 0, -1, 1] is given. The sum of the maxi-

mum subarray is 8. The last 3 values do not increase the score of the 

sequence but using those returns a longer matching sequence. The 

search regions for prefix and suffix start from the beginning and end 

of the diagonal, respectively. The second best matching sequence 

may intersect with the best matching subsequence. However, since 

the corresponding portions of the query or database sequence are 

used for the best subsequence, those portions cannot be used again 

and this may lead that the second best matching subsequence is no 

longer a good matching subsequence.  

Fig 3 represents this scenario. The sum of scores are as follows 

for three diagonals, A, B, and C: sum(A)=7, sum(B)=3, and 

sum(C)=10. Diagonal C has a better matching sequence than diago-

nal A. The last two cells of A intersect with the first two cells of C. 

If diagonal C is selected, those cells will not appear in the prefix 

space to be further analyzed. Since those cells are ignored, diagonal 

B is selected instead of diagonal A. On the other hand, the first two 

cells of diagonal C could be ignored and then diagonal A with a good 

score of 7 could be selected. 

This problem can be avoided or minimized if special considera-

tion is given to the borders of the contiguous subarray. The contig-

uous segment of a matrix may include high and low scores. It is clear 

that the highest score values should certainly be included in the final 

alignment. A method which separates the good scoring part of the 

maximum contiguous segment from the rest of the weak scoring 

segment is designed. Borders separate the good scoring part of the 

maximum contiguous segment. Beginning from the end coordinates 

of a segment and moving inwards by deducting the current cell score 

from the total score of a segment, the border is defined at the point  
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Fig. 3. The effect of low scores at the end of matching subsequence. 

 

where the score of the segment falls by at most 2. This is repeated 

for both ends of a segment to define hard borders. An example of a 

maximum contiguous segment and the defined borders is given as 

follows. 

 

Maximum contiguous segment:                   1 1  1  5  0  -1  1 

Segment with borders(marked as red lines):1 1 | 1  5 | 0 -1  1 

 

The portions outside the hard borders can be reused in further 

stages of divide-and-conquer method. The algorithm is improved 

and named as iSEAL. The basic steps involved in iSEAL are as fol-

lows: 

 

iSEAL (M X N Matrix) 

#Input: A matrix M X N with query sequence and database  

#sequence.  M and N are the lengths of query and database  

#sequence respectively. 

#Output: An alignment of query and database sequences. 

Step 1. Create a matrix of BLOSUM scores for the given query 

and database sequence. Divide M X N matrix into diago-

nals. 

Step 2. Find the maximum contiguous sub-array for each diago-

nal of M X N matrix.   

Step 3. Compare the scores of all the maximum contiguous seg-

ments for each diagonal and find highest scoring segment 

for that matrix. 

Step 4. For each highest scoring segment define borders. 

Step 5. Repeat Step 1 to Step 4 for two sub-matrices on either 

ends of the borders of the maximum contiguous segment. 

Step 6. Repeat Step 1 to Step 5 until the sub-matrix has no posi-

tive scores or ends of matrix are reached. 

Step 7. The highest scoring segments from all the sub-matrices 

are joined and padded with gaps to make the final align-

ment. 

 

4 IMPLEMENTATION 

4.1 Experiments 

We have implemented our algorithm using Perl. A database of 45 

transcription factor protein sequences downloaded from NCBI 

serves as a basis for all experiments. Each sequence from the data-

base is aligned with a test database sequence, using all the alignment 

methods developed, so as to get a comparative view of alignments.  

Preparing Test Database. To prepare a test database, protein se-

quences of transcription factors of all organisms are downloaded in 

FASTA format from NCBI.  A database of these sequences was cre-

ated with standalone BLAST version using makeblastdb command.   

The query is searched against the database using the BLASTP com-

mand. The additional parameters such as the threshold value can be 

specified according to the requirements.  Gap penalty is not a subject 

under focus for the present research, so the lowest values supported 

by BLAST are used.  For the experiments, default values are thresh-

old = 10.0, gapopen = 6 and gapextend = 2. 

Identifying Motifs. Multiple sequence alignment of the database 

of transcription factors sequences provides a useful insight into the 

evolutionary relationships.  Since all the proteins in the database are 

transcription factors, they are expected to have similar functional 

domains.  Multiple sequence alignment method lines up a number 

of sequences optimally by bringing the greatest number of similar 

characters into alignment. Most popular tools for multiple sequence  
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Query: gi|6323540|ref|NP_013611.1| TFIID subunit (19 kDa), involved in RNA polymerase II transcrip-

tion initiation, similar to histone H4 with atypical histone fold motif of Spt3-like transcription 

factors [Saccharomyces cerevisiae]  

 

Test Database Sequence: gi|125490392|ref|NP_038661.2| POU domain, class 5, transcription factor 1 

[Mus musculus] 

Gapped BLAST output:(Score=36) 

 

Query  2    SRKLKKTNLFNKDVSSLLYAYGDVPQP-LQATVQCLDEL  39 

            +RK K+T++ N+   SL   +   P+P LQ      ++L 

Sbjct  222  ARKRKRTSIENRVRWSLETMFLKCPKPSLQQITHIANQL  260 

 

iSEAL output: (Score = 202) 

Query: m s - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Db   : l s l k n m c k l r p l l e k w v e e a d n n e n l q e i c k s e t l v q a 
       

Query: r k l k k t n l f n k d v s s l l y a y g d v p q p - l - q a t v q c l d e l v s g            

Db   : r k r k r t s i e n r v r w s l e t m f l k c p k p s l q q i t - - - - - - - - - - 
      

Query: y l v d v c t n a f h t a q n s q r n k l r l e - d - - - - - f - - - - - k f a l 

Db   : - - - - - - - - - - h i a - - - - - n q l g l e k d v v r v w f c n r r q k - g - 
 

Query: r k d p i k l g r a e e l i a t n k e q q v t d d d e e a - k k q f n e t d n q n s l k r y 

Db   : k r s s i e y s q r e e y e a t g – - - - - - - - - - - a v s - - - - - - - - - - - - - - - 
 

Query: r e e d e e g d k q g p k q f n e t d n q n s - - - - - l k r y r e e d 

Db   : - - - - - - - - - - - - - h f g - t p g y g s p h f t t l - - y - - - - 
  

Query: e - - - - e g d - - - e m v t d d d e e a a g r n s a k q s t d s k a t k i r k q g p – - k 

Db   : s v p f p e g e a f p s v v t - - - - - a l g - - - - - - - - - s - - - - - - - - - p m h s 

Fig. 5. Sample alignment comparison between gapped BLAST and iSEAL. 

Fig. 4. Sample output of BLOCKS leading two blocks on sequences A: gi|47169278; B: gi|42543138; C: gi|19069247; D: 

gi|116000610; E: gi|108884304; F: gi|2829920; G: gi|12545384; H: gi|47605752; I: gi|47117899; J: gi|6323540; K: gi|125490392. 

BLOCK2 

A  KFDPWVLPNKALFGEKEWYFFSPRDR 100 

B  ALNLSFKNMAKLKPLLEKWLNDAENL  74 

C  ALELRFPDYDFCGESWGSFRRKTLAE  87 

D  VKADEARLASITDEKERKRLKRLLRN  67 

E  ERLARFLWSLPVAHPNISELDRSEAV  74 

F  DSSSVIVSTGKYKNFTIFLTIPFLHV  77 

G  PDYSMALSYSPEYASGAAGLDHSHYG  40 

H  QRNSGKWVCELREPNKKTRIWLGTFQ  84 

I  PDYSMALSYSPEYASGAAGLDHSHYG  40 

J  QNSQRNKLRLEDFKFALRKDPIKLGR  52 

K  SPCPPAYEFCGGMAYCGPQVGLGLVP  90 

BLOCK1 

A  GSHMGIQETDPLTQLSLPPGFRFYPTDEELMVQYLCRKAAGYDFSLQLIAEIDLY  95 

B  GSHMEEPSDLEELEQFAKTFKQRRIKLGFTQGDVGLAMGKLYGNDFSQTTISRFE 100 

C  MRYLELGCISKTNKLFQKLQDLNPLLNIEIEAYSCKSSRRQRGRFVEKPLGYLLS  87 

D  MTVSGSSGRAKRSTTQAKAAEQMATKPQARRASEAGTSAVVKGFSHIPHGNTALS  78 

E  MAVGPPTGGSGNPPQIPVQPHPILAPSPLFALPTLNFTASQVATVCETLEESGDI  71 

F  MGRRKIEIKRIENKSSRQVTFSKRRNGLIDKARQLSILCESSVAVVVVSASGKLY  71 

G  MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSP  43 

H  MNSFSAFSEMFGSDYESPVSSGGDYSPKLATSCPKKPAGRKKFRETRHPIYRGVR  77 

I  MSLVGGFPHHPVVHHEGYPFAAAAAAAAAAAASRCSHEENPYFHGWLIGHPEMSP  43 

J  MSRKLKKTNLFNKDVSSLLYAYGDVPQPLQATVQCLDELVSGYLVDVCTNAFHTA  77 

K  MAGHLASDFAFSPPPGGGDGSAGLEPGWVDPRTWLSFQGPPGGPGIGPGSEVLGI  67 



 

 

 

  
 Id. No.  

(gi no) 
Dynamic 
Prog. 
Score 

Gapped
BLAST-
score 

iSEAL 
score 

Std. 
BLOCKS 
motifs 

Motifs  
detected  
by  
gapped 
Blast 

Motifs  
detected  
by 
iSEAL 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

47169278 
42543138 
19069247 
116000610 
6323540 
108884304 
2829920 
12545384 
47605752 
47117899 
4885665 
12643786 
4504573 
68989258 
31982933 
13958612 
112253397 
54039792 
3913130 
127704 
31317299 
31317297 
113594633 
124360101 
124359419 
88963532 
88963530 
60498987 
124360009 
124359882 
89113792 
89113790 
89113784 
89113782 
89113780 
89113778 
124054218 
124013584 
729811 
729810 
81673105 
47117699 
122934930 
17981708 
122053927 

439 
557 
417 
414 
427 
555 
464 
498 
516 
498 
501 
526 
444 
531 
380 
417 
395 
432 
533 
415 
450 
452 
463 
350 
497 
358 
350 
376 
489 
410 
350 
352 
323 
351 
358 
343 
281 
431 
380 
376 
451 
498 
428 
454 
376 

22 
430 
36 
32 
36 
70 
31 
33 
34 
33 
36 
28 
35 
41 
24 
38 
24 
39 
30 
36 
26 
2 
30 
19 
26 
26 
26 
19 
25 
41 
26 
24 
26 
27 
26 
27 
26 
33 
27 
27 
29 
33 
27 
40 
38 

164 
516 
248 
252 
202 
265 
222 
175 
317 
175 
243 
259 
245 
227 
156 
190 
223 
214 
261 
136 
147 
152 
218 
176 
114 
162 
156 
248 
167 
274 
158 
151 
134 
177 
158 
174 
140 
255 
182 
163 
162 
175 
206 
228 
196 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

2 
2 
2 
1 
1 
2 
1 
1 
0 
1 
0 
2 
0 
1 
0 
2 
2 
2 
2 
2 
1 
1 
2 
1 
2 
2 
2 
0 
1 
2 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
2 
2 

2 
2 
2 
2 
2 
2 
2 
0 
2 
0 
1 
2 
2 
1 
2 
1 
1 
2 
2 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
2 
1 
2 
2 
2 

Table 1. Comparison of alignment methods on a database of 50 

transcription factors. 

 

alignment are ClustalW [13] and PileUp [14].  ClustalW is a pro-

gressive method of multiple sequence alignment in which most re-

lated sequences are aligned and then progressively less related se-

quences or groups of sequences are added.  Alignments based on 

localized sequences give information about domains and motifs.  

The common blocks or motifs are extracted from unaligned se-

quences based on previously calculated motifs from known gene 

families.  There are widely used web tools like Profile [14] and 

BLOCKS [14]. Profile identifies highly conserved portion of the se-

quence alignment and constructs a score profile which includes 

score for substitutions and gaps.  BLOCKS tool concentrates on the 

conserved regions of the alignment with substitutions without gaps. 

Since SEAL involves placing gaps between locally optimal se-

quences, BLOCKS is a good tool to provide standard motifs without 

gaps. In Table 1, the column for Std. BLOCKS motifs indicates the 

number of motifs found by the BLOCKS tool. Multiple sequence 

alignment of some sequences by BLOCKS is shown in Fig. 4 to give 

a measure of the number of significant motifs (protein segments 

which can function independently) identified by alignment methods.   

The Dynamic Programming alignment (Needleman- Wunsch) 

serves as a standard for each alignment as it gives optimal alignment 

with the maximum score. BLAST (without gaps) and gapped 

BLAST are very popular tools and therefore can serve as good 

benchmarks. The methods developed in this research SEAL and im-

proved SEAL (with borders) are used for alignment. The scores of 

the alignments produced with each method are compared. Fig. 5 pro-

vides an example of comparison of alignments between gapped 

BLAST and iSEAL. 

In a total of 45 sequence alignments, all the scores obtained 

by iSEAL are higher than those obtained by gapped BLAST. 

There are 14 cases in which motifs detected by iSEAL are 

undetected by gapped BLAST, 6 cases where motifs detected   
by gapped BLAST are undetected by iSEAL. In the remaining cases, 

both BLAST and iSEAL detected the same motifs. Therefore, ac-

cording to the results obtained, iSEAL gives 87% performance effi-

ciency in detecting motifs and BLAST gives 75%. The range for the 

length of query sequences is [81..217]. In our independent dataset, 

we have tried sequences whose length between about 60 and 700. 

We have looked into a number of newer alignment programs. In 

essence, they maintain the similarity of the traditional algorithms. 

However, methods such as AlignMe, can use additional information 

such as PSSM for alignment with low sequence identity. In our case, 

we apply plain alignment comparison and compare with AlignM-

Fast. For the example provided in Fig. 4, AlignMe-Fast barely hits 

both motifs. The size of alignments is almost half of what iSEAL 

detects in Fig. 5. The aligned parts with respect to the blocks are 

highlighted below: 

 

 

 

 

 

 

SEAL combines the divide-conquer method with the maximum 

contiguous sub-array solution.  Locally best alignments are found 

and combined to give a complete alignment between two sequences.  

In this work, each sequence of a database of 45 query sequences is 

aligned with a test database sequence using Dynamic  

Programming, BLAST (without gaps), gapped BLAST, SEAL and 

iSEAL sequence alignment methods.  The alignment scores ob-

tained by SEAL and iSEAL are consistently higher than BLAST in 

all 50 cases.  In 60% of cases, all the motifs detected by the 

BLOCKS program are detected by both SEAL and gapped BLAST.  

In 28% of cases, SEAL detects motifs which are undetected by 

BLAST and in 12% of cases BLAST detects motifs undetected by 

SEAL.  Therefore, SEAL is a better scoring method than BLAST 

and produces good quality alignments. Table 1 provides the com-

parison of alignment methods for each sequence. We applied one-

tailed t-test, since we are interested in detecting motifs or sensitivity 

of detection rather than accuracy. We have obtained a p-value of 

0.048 and this is enough to reject the null hypothesis.  

4.2 Complexity Analysis 

In this section, we provide the complexity analysis for running al-

gorithm sequentially and in parallel. Since our method minimizes 

the dependencies between steps of the procedure, it is possible to 

reach low complexity when run in parallel with enough number of 

query  MSRKLKKTNLFNK-----DVSSLL---------------- 

db     MAGHLASDFAFSPPPGGGDGSAGLEPGWVDPRTWLSFQGP 

 

query  ----TAQNSQRNKL---RLEDFKFALRKDPIKLG------ 

db     KVEPTPEESQDMKALQKELEQFAKLLKQKRITLGYTQADV 
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processors. We provide time complexity of sequential algorithm to 

explain the complexity of the parallel algorithm. 

 

Sequential Complexity  

 

The complexity analysis includes two major computations. These 

include finding the maximum contiguous sub-array of all the diago-

nals in a matrix and dividing the matrix into two sub-matrices. The 

time complexity for finding the maximum contiguous sub-array for 

a single diagonal is 𝑂(𝑛) using Kadane’s algorithm (Bentley; 

1984).The complexity for finding the maximum contiguous sub-ar-

ray for all the diagonals in a n x n matrix and the highest scoring 

segment among them is 𝑂(𝑛2). 

SEAL finds the highest scoring segment and splits the matrix into 

3 parts: the sub-matrix that holds the highest-scoring segment, the 

sub-matrix before the segment and the sub-matrix after the segment. 

In the worst case, matrix is split into two when the length of segment 

is very small and the best maximum contiguous sub-array appears 

close to the boundaries of the matrix. On the average, each sub-ma-

trix has the quarter of the matrix size before the split. The time com-

plexity of SEAL denoted by T(n), can be represented by the follow-

ing recursion: 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑐𝑛2  (1) 

assuming that the split divides the matrix into roughly two equal-

sized partitions and assuming the length of maximum contiguous 

array is 0 (i.e., in reality, it cannot be 0, this is just a case of worst 

case for split). The time complexity of SEAL, after solving this 

equation is 𝑂(𝑛2). Actually, in the recurrence part, the coefficient 

b of 𝑇(𝑛/𝑏) can be more than 2 if the length of the common subse-

quence is a function of n. 

 

 

Parallel Complexity 

 

The advantage of SEAL is its parallelizable nature. The traditional 

divide-and-conquer algorithms parallelize 𝑎𝑇(𝑛/𝑏) of the recur-

rence relation. If there are a number of processors, each processor 

should execute 𝑇(𝑛/𝑏) and run concurrently. In such a case, if 

𝑓(𝑛) ∈ Θ(𝑛𝑐), the time complexity becomes Θ(𝑛𝑐). The SEAL al-

gorithm does not only parallelize 𝑎𝑇(𝑛/𝑏) but also parallelizes 

𝑓(𝑛). It parallelizes 𝑓(𝑛) at two levels. Therefore, three components 

of SEAL are parallelizable: a) submatrices (aT(n/b)), b) the diago-

nals, and maximum contiguous subarray of each diagonal. a) The 

divided sub-matrices can be processed independently by different 

processors. b) The diagonals in each matrix also can be processed 

independently for finding maximum contiguous sub-array. c) The 

maximum contiguous subarray can be computed in parallel. When 

SEAL is parallelized based on the parallel processing of sub-matri-

ces, the time complexity can be represented by the following recur-

rence tree. 

The function f(n) should have low time complexity to lower the 

overall time complexity. The complexity of finding maximum con-

tiguous subarray is 𝑂(log 𝑛) in the presence of (
𝑛

log 𝑛
) parallel pro-

cessors (Perumella; 1995). Since each diagonal can be executed in 

parallel, the complexity of finding the maximum contiguous subar-

ray among all diagonals is 𝑂(log 𝑛). The previous recurrence rela-

tion in (1) turns into  

 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑐 log 𝑛. 

 

 

 
Fig. 5. Recurrence tree for SEAL  

 

Each sub-matrix can be computed in parallel further. Then the re-

currence relation becomes 

 

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑐 log 𝑛 

 

The complexity of this recurrence relation is Θ(log2 𝑛) in the 

presence of satisfactory number of processors. In this expression, 

the coefficient b is 2. As long as b>1, this Θ(log2 𝑛) time complex-

ity still holds. This indicates that the submatrices do not even need 

to be split into half. The recurrence relation can be written as: 

𝑇(𝑛) = 𝑇 (
𝑛

𝑏
) + 𝑐 log 𝑛 

where b>1 and the complexity is still Θ(log2 𝑛). Our work shows 

the open area for the research to be conducted for sequence align-

ment by reducing the dependencies among steps. 

In terms of space complexity, each diagonal is processed inde-

pendently, and the total size of diagonals is the size of the complete 

matrix. At least 𝑂(𝑀𝑥𝑁) space is required. The maximum contigu-

ous subarray problem requires linear space. The space complexity 

of this system is 𝑂(𝑀𝑥𝑁).  

5 DISCUSSION 

SEAL detects and aligns the major similar segments between two 

sequences and is also sensitive to small similar fragments in other 

parts of the alignment. It gives a better alignment and score for 

highly similar sequences when compared to other heuristic methods. 

It is sensitive to distantly related sequences and therefore helps in 

better function prediction of unknown proteins. SEAL provides an 

ease of usage without the burden of specifying gap penalties. Gap 

penalty parameters, namely, gap open and gap extension costs, need 

not be specified for SEAL as they are implicitly introduced within 

the alignment. This overcomes the disadvantages of using the gap 

penalty threshold value, as used in other heuristic methods, which 

may not be good for all alignments. The algorithm can be parallel-

ized to reduce time complexity. 

In our experiments, we have obtained promising results for 

SEAL. However, there is still space for improving SEAL. In the pro-

posed approach, we tried to keep the interaction between subprob-

lems minimal. We have used a Greedy approach: the segment with 

the highest scores should be part of the final alignment. The borders 

of the selected segment may eliminate some good matching seg-



 

 

ments. To avoid this problem, we introduced hard borders where re-

gions outside the hard borders can be reused in the subproblems. 

This minimized the problem of intersecting diagonals. However, 

this component is a heuristic component of our algorithm. We be-

lieve that this heuristic can be avoided and optimal results can still 

be obtained. However, it may limit the parallelization of the algo-

rithm. Further research has to be done to study intersecting diago-

nals. Parallel methods may be developed to compute maximum seg-

ments on each diagonal concurrently with independently processing 

sub-matrices. With enough number of parallel processors, it is pos-

sible to reduce the complexity to Θ(log2 𝑛) using our method. We 

need high number of processors to truly evaluate the performance of 

our system. In basic parallel environments, our system does not out-

perform the other techniques in running time. As future work, the 

parallel implementation of our method should be evaluated on GPU-

based architectures or high-performance computing servers. Our 

proposed algorithm can also be incorporated or used by other align-

ment algorithms. 
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