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Abstract 

  

Spatio-temporal querying and retrieval is a challenging task due to the lack of simple user interfaces 

for building queries despite the availability of powerful indexing structures and querying languages.  In this 

paper, we propose Query-by-Gaming scheme for spatio-temporal querying that can benefit from gaming 

controller for building queries. By using Query-by-Gaming, we introduce our spatio-temporal querying and 

retrieval system named as GStar to interactively build subsequent spatio-temporal queries to determine if a 

state is directly reachable from current state and eventual spatio-temporal queries to know whether a spatial 

state is reachable from a current state.  Queries are built using features of gaming controller by displaying 

the original video frames rather than on a graphical interface using a mouse or a keyboard.  GStar has three 

main components: building the query, searching and retrieval of clips, and displaying query results.  The 

queries are applied to an indexing structure called semantic sequence state graph (S3G) and results of the 

query are displayed dynamically to provide timely feedback to the user. Experimental results and user 

interface are provided for a tennis video database. Users define desired game state (player and ball position) 

using an interactive interface at multiple points in time and GStar automatically retrieves all rallies that 

contain both states. Finally, the user interface evaluation comparing gamepad-based interface and mouse 

interface for spatio-temporal querying has been studied. 

 

1. Introduction. 

 

Spatio-temporal querying is the process of retrieving spatio-temporal objects and events that span 

space and time domains.  Each object may change its position and its relationship with other objects 

continuously over time due to events or natural phenomena. As time and space are both continuous domains, 

the number of states in which a spatio-temporal system can exist might be infinite.  Therefore, capturing 

and representing various states of the system and influencing events that cause state transitions along with 

semantics is challenging.  The design of a good spatio-temporal query system should consider the following. 

1) Representation.  The methodology used to model the spatio-temporal system must be 

sophisticated enough to capture the semantic information into a representation of manageable 

size and structure.   

2) Query building.  Unlike traditional database queries, spatio-temporal queries request semantic 

information based on user’s interpretation.  Often, the query is complex consisting of several 

related events and interactions.  Therefore, the system should allow the user to build the query 

methodically through an environment that will guide the user step-by-step to build a spatio-

temporal query without knowing the internal representation of the data to retrieve a sequence 

of events which causes the specified action.  
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3) Simplicity.  The spatio-temporal query system must provide a user friendly interface that is 

easy to use.  The interface must be intuitive and must not require the user to know the internal 

representation of the semantic information.  This allows changes and upgrades to the internal 

representation of the system without affecting the user interface. 

1.1 Related Work 

Spatio-temporal querying and retrieval has been studied by researchers. The research involves 

developing spatio-temporal querying languages and interfaces for building spatio-temporal queries. In 

addition, we briefly mention challenges of incorporating temporal constraints.  

Spatio-Temporal Query Languages. Developing querying languages is important for experts to 

query the database. If visual interfaces are developed for building queries, these visual queries can be 

mapped to the querying language. There has been significant effort on querying spatio-temporal databases.  

The STQL (Spatio-Temporal Query Language) [3] is developed to demonstrate how SQL can be extended 

to query changes of spatial objects over time.  It extends SQL by adding features and a mechanism to 

support complex spatio-temporal predicates (disjoint, meet, overlap, coveredBy, covers, inside, contains).   

STQL is based on select-from-where clause by integrating predicates into SQL.  A survey of qualitative 

spatial reasoning is provided to represent key calculi for describing a set of spatial relationships related to 

direction, distance, shape, moving objects, and uncertainty [33]. Moving GeoPQL [23] is an extension of 

Geographical Pictorial Query language. Spatio-temporal queries are formed by adding temporal layers and 

defining temporal properties of spatial objects. The temporal SOLAP (GIS+online analytical system) 

includes a temporal language named TPiet-QL [26]. Although the proposed system in [26] has a powerful 

way of visualizing results, the application interface accepts queries in textual TPiet-QL format.  Jain et al. 

[9] use pattern matching properties of SQL to express spatio-temporal queries.  Since the data is represented 

as strings based on a grammar, it is possible to apply pattern matching techniques.   

User Interfaces for Spatio-Temporal Querying. Since learning about the query language is hard for 

traditional users who query and update the database using standard types of queries and updates called 

canned transaction [32], such users rather rely on a sophisticated user interface for building queries. The 

user interface for visual query languages usually uses icons to represent objects.  The user selects objects 

and specifies the desired interactions by choosing the operators supported by the system.  Penna et al. [12] 

propose a SQL-like SRQ (spatial relation query) by allowing users to arrange visual information (without 

temporal information). Liu et al. [13] describe a visual graph based query interface that has 4 rectangular 

boxes to define variables, conditions, video attributes and scenes, and 2 connections to link variable boxes 

or scene boxes. Such an interface helps to define textual queries with the user interface however declaring 

spatio-temporal component via variable connection may not be easy for users. Certo et al. propose a visual 

time automaton for building time queries. Although their system supports queries at different temporal 

granularities and simplifies query building, the users may need to learn about building basic automata [14]. 

The user interface in [17] supports multi-DST (dynamic spatio-temporal) queries and enables users to select 

multiple regions with corresponding intervals for a specific object to generate spatio-temporal queries. Naik 

et al. [10] provides a user interface for querying tennis video databases.  The user chooses (or clicks) the 

locations of players and the ball on the available interface for each instance in the query.  However, point-

and-click approach using a graphical court view is tedious since it requires both choosing player/ball objects 

and their locations, and such an interface does not provide an intuitive method of building queries. A query 

is built by providing a sequence of states (object-location pairs) but not necessarily consecutive and then 

linking those states by actions of objects. The output of a query is a clip that contains the sequence of states 

with corresponding actions. In [27], the queries are categorized into regional, fuzzy spatio-temporal, and 
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trajectory queries and a button is provided for each type of a query (e.g., find regions of an object for a 

specific interval). 

Query-by-Example. Since the users may not know the internal representation of database, the users 

may use a) similar examples by browsing the database, b) provide what the result should look like by 

generating a sample scenario using the interface or c) sketch the components and interactions of objects in 

a query. Papadias et al. [30] propose a pictorial query-by-example that helps to retrieve or define direction 

relations from symbolic images. The user is able to develop queries such as “retrieve all sub-images where 

object X is northeast of object Y.” The QBIC (Query by Image Content) [30] supports querying based on 

image and video content based on color, shape, texture, and sketches. The QBIC system allows users to 

define their queries based on actual images from the database and a graphical interface that provides 

drawing and selecting. Query by sketch in QBIC allows user to draw main lines and edges in an image by 

freehand and template matching is applied based on the reduced-resolution edge map. For music retrieval, 

query-by-humming [31] enables users to query an audio database by representing the melodic information 

in a song as relative pitch changes. Similar query-by- concept was also applied for spatio-temporal 

querying. Query-By-Trace (QBT) [4], Visual Interactive Query Interface [6] and Visual Query system S-

TVQL [5] are examples of visual interfaces for spatio-temporal databases.  QBT [4] interactively and 

graphically produces a sketch from a derived spatio-temporal predicate.  The user inserts objects freely (line 

or area) in an area and defines the movement of each object by sketching the path.  A query includes several 

such traces which determine the spatial relations between the objects.  Query-by-Trace allows users to 

define topological relationships for regions and trajectories on a 2D screen where x-axis indicates the spatial 

component and vertical axis indicates the temporal dimension. For example, a user may draw an evolving 

region such as a hurricane and then draw trajectory of flights that go through a hurricane for a query “find 

flights that go through hurricanes.” The user interface of STVQL [6] presents the database in the form of 

maps and list of attributes.  The user selects the element of the query by clicking on the desired attributes.  

Based on the selected attributes all valid operators are displayed in the interface.  The underlying DBMS is 

relational with spatial capabilities.  The valid-time temporal information of an object is stored as explicit 

time attributes (from, to). In [16], iconic visual querying allows user to drag 3D icons to a scene editor and 

provide relative positions of the objects. The object motions are captured using multi-track metaphor where 

the trajectory of an object is captured as the user moves the object. The motion of multiple objects are 

synchronized with respect to relative manual dragging speed of the user. Although such a scenario is 

beautiful, the user needs to build the query from scratch and the order of object motions may not be 

preserved due to rough synchronization among trajectories. 

Temporal Constraints of Spatio-Temporal Queries. The interface of Mars [18] lets the user choose 

the spatial location on a map by using map functions and find microblogs in the last specific number of 

hours by providing the time value along with a weight between distance and time. Although statistical 

results can be provided in Mars, the interface only accepts a position of interest and a single time interval.  

Such an interface may not be effective if the number of spatio-temporal intervals is more than two. The 

spatio-temporal interface for analyzing taxi trips in New York City [19] enables selection of regions on a 

map and selecting either temporal interval or a hierarchy of temporal intervals (years, months, days, and 

times of days). Such interface does not support spatio-temporal querying for multiple moving objects 

simultaneously. The STEWARD [20] and Newsstand [22] systems execute spatial components of a spatio-

temporal queries at the server side. The temporal component is executed by a slider that indicates the 

interval but it suffers from poor updates of the query results during interactivity if spatial results are not 

indexed properly. The VacationFinder system [21] helps to analyze where people are traveling based on 

twitter messages by choosing spatial location and choosing two temporal intervals. So this type of system 
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limits spatial and temporal components of a query. Spatio-temporal Pseudo-Relevance Feedback system 

[24] accepts temporal condition in textual form. The spatio-temporal search of crowd sourced information 

[25] only accepts beginning and ending date for the temporal dimension of a spatio-temporal query. The 

Murmur project [28] supports querying time-varying attributes using a time travel facility for geo-

databases. The time travel facility provides the map and thematic view at an instant and also supports 

animation of the map similar to a movie-map for a time interval. The continuous querying component of 

the PLACE (Pervasive Location-Aware Computing Environments) [29] proposes sliding-window concept 

to support temporal expiration. For example, an object that satisfies the temporal condition such as “within 

one hour” may not be part of the query result in future time. The PLACE system focuses on continuous 

querying and only one temporal interval is supported. 

 

1.2 Our Method 

One of the challenges in spatio-temporal querying is to provide spatio-temporal information about 

multiple objects in a synchronized or ordered way. The multiple trajectory-based queries, it may not check 

the concurrent progress of trajectories. For example, for a simple query like “ find videos where object A 

moves to X as object B moves to Y and then object A moves to Y as object B moves to Z” requires inputting 

partial temporal constraints of a query carefully. The order of events of multiple objects is important for 

spatio-temporal querying. In gaming, multiple objects can be controlled in a simple way by changing the 

object in control. Our proposed method utilizes linear temporal logic for building temporal constraints and 

benefits from gaming in the way spatio-temporal inputs are provided to video games. 

Linear Temporal Logic. In Linear Temporal Logic (LTL), two important temporal operators are next 

(○) and eventually (◊). The ‘next’ operator allows checking whether a condition is true in a subsequent state 

whereas the ‘eventually’ operator allows checking whether a condition eventually becomes true. Based on 

these operators, we propose subsequent spatio-temporal querying for the ‘next’ operator and eventual 

spatio-temporal querying for the ‘eventually’ operator. We represent spatio-temporal data as a sequence of 

states, where each state is determined by a unique set of object-location pairs.  An event causes the system 

to transition from present state to next state, and is represented as an arc between the two states. The 

subsequent queries involve building the query in a step-by-step manner and eventual queries involve 

specifying two states and retrieving all sequence of events that takes the video from the first state to the 

final state. In other words, eventual query checks whether a state is reachable from a current state.  

Motivation for Using a Gaming Controller. We observe that an environment that gets spatio-

temporal input from the users is video games.  In these games, spatial and temporal movements of the 

elements are provided by the user using a gaming controller.  Gaming controllers can be used with some 

basic knowledge about the rules of the game by a broad domain of users from 4-year old kids to 70-year 

old people. In this study, we adapt this idea for building spatio-temporal queries. 

Query-by-Gaming. In this paper, we propose a novel spatio-temporal querying and retrieval system 

named as GStar using a methodology similar to the one in gaming by getting user interactions through a 

gaming controller. We name our querying scheme as Query-by-Gaming. GStar supports Query-by-Gaming 

and provides approximate querying for partial match of user queries. Our GStar is tested on tennis videos. 

GStar supports subsequent and eventual queries and has three components: building the query, searching 

and identification of clips, and displaying query results.  For a tennis video, a 'clip' correspond to all events 

in a tennis point from serve until one of both player scores a point. Semantic sequence state graph (S3G) 

[10] is used as an indexing structure to which the queries are applied.  Our technique has an advantage over 

Query-By-Example systems [7] since the user does not need to search for a similar image or video to start 

http://www.sciencedirect.com/science/journal/1045926X
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the query and also has an advantage over sketch-based systems [8] since the user may not know how the 

actual video looks like or how sketches are mapped by the querying system.  In this work, we choose 

gamepad as a gaming controller and compare it with the mouse interface.  

 

The fundamental difference in our user interface from other interfaces is building the query. The main 

idea can be briefly summarized as follows: 

1. The user will generate the query as if he or she plays a game. 

2. As the user provides the commands to the system, the system works on two components: 

a. The system finds the best video clip and provides (shows and plays) it to the user instantly 

so that the user can continue to build query based on the current scene. 

b. The system searches for data that fits the user query and stores them to show to the user 

when the query is complete. 

Our contributions can be summarized as follows: 

 Use of a gaming controller for spatio-temporal querying, 

 Support for subsequent and eventual queries, 

 Approximate querying for spatio-temporal queries, and 

 Interactive and incremental query building by presenting actual video (database) objects. 

 

This paper is organized as follows.  Background on spatio-temporal logic, semantic modeling and 

indexing is provided in Section 2.  Section 3 provides the overview of our system. Section 4 presents the 

Query-by-Gaming in GStar. Section 5 presents illustrations of applying queries to tennis game video. 

Section 6 provides usability study of the user interface. The last section concludes the paper. 

 

2. Background. 

 

In this section, we provide information about the background of our GStar system. Our system uses 

spatio-temporal logic, semantic modeling and retrieval system (SMART) and our semantic sequence state 

graph (S3G) for the retrieval of videos from a tennis video database. These are briefly described below. 

 

2.1 Spatio-Temporal Logic 

 

Temporal logic helps to specify the temporal properties of a system. If the temporal information can be 

described as a path of vertices such as S0, S1, …, Sn where each Si corresponds to an instant in time, linear 

temporal logic (LTL) [15] can be used to analyze such a system. Our system is based on the spatio-temporal 

logic described in [16]. A state diagram Ξ is a finite set of states where each state is represented by a node 

and events that cause state transitions are represented by directed arcs.  There is an event corresponding to 

each state transition. The temporal assertion, Ψ:=(Ξ, S) ╞ Φ, states that for the state diagram Ξ and the 

current state (or condition) S, the temporal formula Φ is satisfied. In other words, the system is evaluated 

to check if Φ holds or not with respect to the current state. The temporal formula can be generated using 

Boolean operators such as ¬, , ,   and temporal operators such as next (○), eventually (◊),global (□), 

until (U), and releases (R). A temporal formula can be expressed as: 

 

 Φ := θ | ¬ θ | θ1 θ2| θ1 θ2| θ1 θ2 | □ θ |○ θ |◊ θ | θ1U θ2 | θ1R θ2 

 

This study focuses on next and eventually operators. These are briefly described as follows: 

http://www.sciencedirect.com/science/journal/1045926X
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 Next. The notation for the next operator is “X” or “○”. Xθ or ○θ checks the correctness of the 

condition θ to be satisfied in the next state. If the current state is Si, (Ξ, Si) ╞ ○θ states that θ 

becomes true in the next state of the graph Ξ starting from the current state Si. 

 Eventually/Finally. The notation for the eventually operator is “F” or “◊”. Fθ or ◊θ indicates 

that there exists a state reachable from the current state where the condition θ is satisfied. If the 

current state is Si, (Ξ, Si) ╞ ◊θ states that θ becomes eventually true in the graph Ξ starting from 

the current state Si.  

 

2.2 Semantic Modeling and Retrieval System (SMART). 

 

The semantic content of a video represents high-level information in the video which is of interest to 

viewers. In general, viewers are interested in objects, events, sequence of events and the resulting spatio-

temporal interactions among objects in the video.  SMART [1,9] is a system developed for modeling and 

retrieval of semantic contents in a tennis video.   SMART models the semantic contents of a tennis video 

using a set of objects, a set of events, a set of locations on the court besides a set of camera views and a set 

of production rules  which are given in [1]. 

 

Objects: The set of objects ΣO consists of three objects: the ball b, the first player U and the second player 

V: 

 ΣO = {U, V, b}. 

Events: The set of events ΣE consists of two distinct events: the forehand shot F, and the backhand shot B: 

 ΣE = {F, B}.   

Locations:  The tennis court is divided into 13 non overlapping regions including the net N as shown as 

legend in Figure 1. The set of locations ΣL includes all these 13 regions:  

  ΣL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, N}.  

    

Using the production rules, the semantic contents of the video are encoded as a set of strings, one 

string for each clip, and stored in the database. 

 

2.3 S3G - Semantic Sequence State Graph. 

The semantic sequence state graph (S3G) [2, 10] represents the same information in the form of a 

graph.   In tennis video, each object (ball, player1, player2) can be in any of the 13 possible locations 

theoretically.   Each assignment pattern defines a unique state in S3G, and the number of states in S3G is 

less than 133 due to game constraints.  An event from the set of all possible events Σ = {F1 (player1 hits 

forehand), F2 (player2 hits forehand), B1 (player1 hits backhand), B2 (player2 hits backhand)} makes the 

objects move causing state-to-state transitions.  Note that S3G may have cycles as a state may be visited 

many times during the game.  Thus, in S3G, the semantic information of a clip is represented by a sequence 

of states and transitions, starting from one of the 8 possible states (four serve locations and two players).  

The semantic information of all clips, together, represents the semantic information of the video. 

 

Example:  Consider three clips M1 = A[U] C[U7b7V10 b4 V4], M7 = A[U] C[U7b7V10 b4 BV10 b5 BU7 

b4 V4], and  M10= A[V] C[U7b10V10 b7 ] of a video. In these string representations of SMART, A 

indicates close-view camera and C indicates the court view.  In M1, Player1 serves an ace from location 7 

as Player2 moves to location 4 to receive.  M7 begins with a good serve from Player1 from position 7.  

Player2 hits a backhand shot and sends the ball to location 5.  Player1 in location 7 returns the ball to location 

http://www.sciencedirect.com/science/journal/1045926X
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4 by hitting a backhand shot.  In M10 player2 serves from location 10 to location 7.  The S3G in Figure 1 

represents the semantic information in the three clips described above.  For example, nodes S1, S4 and the 

state transition from S1 → S4 represent the clip M1.           

 

         

 
Figure 1:  Construction of S3G from SMART string data. 

 

The temporal order of states in M1 is (S1, S4) indicating that S1 is the first state and S4 is the second 

state.  Similarly, temporal orders of states in M7 and in M10 are (S1, S2, S3, S4) and (S5, S1), respectively.  

Each clip is attached a list of temporal orders (ranks) of the state as shown in Figure 1 by dotted red squares.  

These temporal orders or ranks should be checked to see if states appear consecutively in a clip. Firstly, 

clips common to all states involved in the query are selected.  Then, clips in which states do not satisfy the 

temporal order constraints are deleted.  Timings of these ranks are stored in the database.  For example, 

time of S1 in clip M1 may be at 127th second, time of S4 in clip M1 may be at 129th second.  Hence the 

event, player1 hits a forehand shot from S1 to S4 starts from 127th second and ends at 129th second.  These 

are represented as StartTime and EndTime for each event, respectively. 

We have analyzed the performance of S3G for retrieving as well as inserting into the index structure. 

Each node keeps the set of clips that has the corresponding state. Whenever the user provides a query for a 

specific node, the index structure is used similar to a finite state machine. Given a specific transition, the 

next state is reached instantly. The next state includes the sets of clips containing that state. The complexity 

of reaching the next state in S3G is O(1). Locating a specific state has also time complexity of O(1) using 

hashing. We do not search the clips but we search the states of the index structure. Then the corresponding 

clips of the state are automatically retrieved. Given a state, getting the list of clips that contain the state is 

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003


Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76, 
doi:10.1016/j.jvlc.2015.03.003 

 

8 

 

instantaneous since that list of clips are maintained at the node. Similarly, the set of clips that satisfy the 

next state can be determined instantaneously. The ranks of clips in consecutive states are checked to make 

sure that they appear back to back in the same clip. Checking ranks is equivalent to finding the intersection 

of sets. The complexity of finding intersections is based on the size of these small sets. If the sizes of two 

sets are m and k, then the complexity is O(m+k) and if m≥k it can be stated as O(m). Similar case applies 

for applying union of sets. If the intersection of sets is included, the time complexity becomes O(m); 

however, note that m is very small with respect to the total number of clips. Detailed discussion of 

experiments and time complexity analysis can be found in [10].  
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Figure 2: Components of GStar 

 

3.  System Overview 

 

The two major parts of our system, query building unit and query processing unit, use the indexing 

structure and the database. The general framework of the system is provided in Figure 2. The main idea of 

our methodology is to map inputs from a gaming controller to a spatio-temporal query. The user controls 

or specifies the location of one object at a time. Using a gaming controller, the user may move object oi 

from location Lm to Ln. This implies that “find video clips where object oi moves from location Lm to Ln”. 

The query building block or unit of Figure 2, as soon as the system gets the new state information from the 

gaming controller, searches the database to determine whether there is any video clip in the database in 

which the specified transition occurs. If such clip or clips exist, the Indexing & DB unit provides one clip 

(or a fragment of a clip) to the query building unit. The query building unit plays the clip and pauses for the 

user to input the next subquery. The query building continues in this manner one subquery at a time. On 

the contrary, the query processing unit keeps track of all clips and sequences of clips that satisfy all 

subqueries specified so far. As the number of subqueries increases, the number of video clips maintained 

by the query processing unit decreases. When the user is done with building the query, the user may choose 

to see all clips that satisfy his or her query. 
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http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003


Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76, 
doi:10.1016/j.jvlc.2015.03.003 

 

9 

 

 

4. Query-By-Gaming in GStar. 

  

In order to build spatio-temporal queries to retrieve video clips, it is important to provide a user 

friendly interface that is easy to use.  A web-based platform independent interface [9] relies heavily on drop 

down menus to build SQL queries.  A court-view and point-and-click approach is provided to specify the 

query in [2].  The annotated videos are maintained as SMART strings in our database. The annotation was 

initially done manually. We have later used a player template (a sample image of a player from the video) 

to track the location of players. Our GStar, which builds the queries using gaming controller to retrieve 

clips from tennis game video, looks similar to playing the game itself.  Our approach is motivated by the 

following: a) gaming controllers are common user interface devices in gaming environments where user 

provides spatio-temporal inputs of the elements and b) gaming controllers with multiple buttons and 

different types of interface features like trigger, directional controls are, usually, more suitable to provide 

spatio-temporal inputs as compared to other devices like keyboard and traditional mouse. 

We have chosen gamepad as a gaming controller in this research. The buttons or features of a gaming 

controller should be mapped to the semantic information in S3G. After providing how a gaming controller 

such as a gamepad can be used for spatio-temporal queries, we explain how spatio-temporal queries are 

built. 

 

4.1 Features of Gamepad.   
 

The gamepad along with other features includes a cluster of 10 buttons B = {b1, b2, …, b10}, an 8-way 

switch A, a record button R and a record/search button R/S as shown in Figure 3.  The features, switch A, 

record R and record/search R/S are used in GStar to build spatio-temporal queries.  

 

    
Figure 3: Features of gamepad                                                                           

 

4.2 Mapping Gamepad Input to Semantic Information in S3G. 

  

Mapping input obtained from the gamepad to the semantic information that the tennis video represents 

forms an integral part in retrieving clips that contain the queried events.  Queries are provided using the 

features of the gamepad, and each feature (a button of B, 8-way switch A, etc.) of the gamepad generates a 

unique numerical input when pressed.  Based on the game context these values are mapped appropriately 

to semantic information.  For example, the input values from the 8-way switch are mapped to the direction 

of movement of the object on the tennis court while building the query.  Thus GStar builds the query and 

applies as input to the indexing system, S3G.     

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
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4.3 Building Spatio-Temporal Queries Using Gamepad. 

A tennis match is composed of sets, and sets in turn are composed of games. Games are composed of points. 

In our database, each point corresponds to a clip. The process of building and retrieval of clips involves 

three main steps.  First, spatio-temporal queries are built interactively using the gamepad.  Secondly, a 

search process is initiated to find clips having interesting events using our graph based indexing structure 

(S3G).  And finally, the video clips identified by S3G are fetched from the database and presented to the 

user. We explain how subsequent queries and eventual queries are implemented in GStar. GStar supports 

their combinations as well. 

4.3.1 Subsequent Query. 

The three main steps involved in building the subsequent query are detailed below.  

 

Specifying States. The first step in building the query starts with a tennis game video being played in a 

window.   

1. Query video initialization. The chosen (or default) video is played from designated start point and 

paused at the beginning of the first serve. The window used for playing the video is also used as 

the query window to position the ball and the players while building the queries.    

2. Setting the initial state. GStar allows the user to select any state as an initial state, Ω0, to start up 

the query process by selecting the “Set Initial State” feature on the user interface.  Selection of this 

feature allows the user to select a specific location for ball and the two players.  These locations 

taken together become Ω0.  L1 (Player1) location is selected first using switch A followed by 

pressing switch R to record its location.  This is followed by selecting Lb (ball location) and L2 

(Player2) in a similar way.  Finally pressing switch R/S to record L2 also triggers a search process 

in S3G to verify the presence of the initial state, Ω0.   

3. Identify and set the initial and current states. If the initial state is not set explicitly, the location of 

the two players (L1 and L2) and the ball (Lb) are registered when the video is paused at the first 

serve. These values taken together (Lb, L1, and L2) represent the initial state, Ω0. In other words, the 

current state of the game (ΩC) is initially represented by Ω0. The user can start building the query 

from Ω0 or the user has the option to specify an arbitrary state as ΩC. 

4. Set the next state. After deciding on the current state (ΩC), the user begins building the query by 

specifying the ball and player positions for the next state, Ω𝑁.  

a. Specifying the ball position.  This is accomplished by moving the ball icon to the desired 

position with the help of switch A, and by using button R to record the ball’s location in Lb. 

The user is given constant visual feedback of the movement of the ball by displaying ball icon 

in query window. 

b. Specifying the players’ positions. After specifying the ball location, the gamepad features are 

used to specify the location of the player who receives the ball. Again, the visual feedback of 

the player’s position on the court is provided to the user by displaying an icon that represents 

the player in the query window. After choosing the desired location, R/S switch is used to 

record the player location (L1 or L2). 

c. Initiate the search for the next state. The next state, Ω𝑁, is represented as (L1, L2, and Lb) and 

search for this state starts. 

This completes the building of the first query, which specifies the desired ball and player location for the 

subsequent state (NextState). 

 

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
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Finding Clips Satisfying the State Sequence. Let Ω𝐶 and Ω𝑁  denote the current state and next state, 

respectively. Let 𝐶𝑖 represent the clips in Ω𝑖 and each clip 𝑐𝑖,𝑚 ∈ 𝐶𝑖has a rank denoted as 𝑟(𝑐𝑖,𝑚)  that 

represents its relative order in its actual clip. 𝜇(Ω𝑖, Ω𝑘) denotes the set of directed edges from state Ω𝑖 to 

state Ω𝑘, and its cardinality is denoted with |𝜇(Ω𝑖, Ω𝑘)|.  
 

1. Check reachability of the next state from the current state. If |𝜇(Ω𝐶 , Ω𝑁)| ≥ 1, then there might be 

a common clip between them. However, the presence of the common clip needs to be verified.  

a. Check the presence of common clip. The set of common clips between Ω𝐶 and Ω𝑁 can be 

found using  𝐶𝐶,𝑁 = 𝐶𝐶 ∩ 𝐶𝑁.  

b. Check whether the states appear back to back. After finding a common clip, it needs to be 

verified whether states Ω𝐶 and Ω𝑁 appear back to back in the clips using the rank of 

common clip(s) in  Ω𝐶 and Ω𝑁. The set of satisfying clips is found as  

 

𝐶𝐶,𝑁
̅̅ ̅̅ ̅̅ = {𝑐𝑝|((𝑐𝑝 ∈ 𝐶𝐶) ∧ (𝑐𝑝 ∈ 𝐶𝑁)) ∧ (𝑟(𝑐𝑝,𝑁) = 𝑟(𝑐𝑝,𝐶) + 1)}  

 

2. Return the query results. Assume that the states that are involved in a query are Ω0, Ω1, Ω2, …, 

Ωn. The output of the query returns 

 

ℚ = ⋂ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛−1

𝑘=0

 

 

Besides returning the actual clips, GStar also returns the union of common clips with proper rank 

information from each state to the next state as the query is built: 

 

 

℧ = ⋃ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑘=1

𝑘=0

 

 

For example, if C0 = [1, 7, 8, 9], C1 = [7, 8, 9, 13], and C2 = [8, 9, 13] then 𝐶0,1
̅̅ ̅̅ ̅ = [7, 8, 9] and 𝐶1,2

̅̅ ̅̅ ̅ =
[8, 9, 13]. Here, we just ignore the rank information for simplicity. Therefore,  ℚ = [8,9] whereas ℧ =
[7,8,9,13]. The set ℧ gains importance when ℚ is empty. By using ℧, it may be possible to see a set of clips 

that satisfy the spatio-temporal query partially. Therefore, the set ℧ provides results for approximate 

querying. 

 

Displaying Results. There are two aspects of displaying query results: query building and query outputs. As 

the user builds a query, the best clip that satisfies the query is chosen to be displayed to proceed building 

the query. When the query user completes the query, the user may want to see the list of all clips that 

satisfies his or her query. To achieve these two aspects of display, at all stages of the query process GStar 

displays a variety of information that may be of interest to the user. The StartTime and EndTime of every 

event in a clip are available in the database.  Using this information the system retrieves and plays the events 

between the queried states in the query window easily.  This allows the user to visualize each event 

immediately if the event is present.   

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
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 Displaying a Sample Satisfying Clip for the Query Building Interface. GStar automatically pauses 

the tennis game video at the EndTime of the event allowing the user to build the subsequent query.  

After the execution of each query, the next state (Ω𝑁) of the current query becomes the current state 

(Ω𝐶) for the subsequent query.  The query process may continue until the user wishes or the query 

result (ℚ) becomes empty.  As the user develops the query by adding new states, ℚ becomes 

smaller and smaller. If the query process terminates since ℚ = ∅, then there is no clip that contains 

the events between all the queried states. On the other hand, if |ℚ| ≥ 2, there is more than one clip 

that satisfies the query at the current stage.  In order to maintain continuity and smoothness during 

the visualization of events while building the query, the system, if possible, plays the current event 

from the same clip from which the immediately previous event was played.   If the current event is 

not present in the clip of the previous event then it is played from another clip chosen randomly 

from ℚ.  In this case, the continuity and smoothness may be lost. 

 

 Displaying Output Query Results. GStar provides the list of clips in ℚ and ℧ in the user interface.  

Each clip in ℚ satisfies all the subqueries of the spatio-temporal query whereas each clip in the 

℧ − ℚ has events that satisfy some of the subqueries.   

  

4.3.2 Eventual Query. 

 

In our previous work, we present basics of eventual query [11]. It has similar steps as in building the 

subsequent query. Rather defining the next state that will happen right after the current state, the eventual 

query defines the final state that may be reachable after a series of states from the current state. Since the 

steps involved in building the eventual query are similar to the steps of subsequent query, they are just 

summarized below. 
 

Specifying States. The eventual query is built by selecting “Eventually Query” feature on the UI and 

specifying an initial state (Ω0) and a final state (ΩF).  GStar displays icons for all three objects in locations 

corresponding to the current state.  The user may select current state as the initial state and record Ω0(Lb, 

L1, L2) by pressing R/S button or may specify an arbitrary initial state in a way similar using the “Set Initial 

State” feature.  Similarly, the final state ΩF(Lb, L1, L2) is also specified using switch A, buttons R and R/S.     

  

Finding Clips Satisfying the State Sequence. The query built is executed to determine if there is a sequence 

of consecutive events from the current state, ΩC, to the final state, ΩF, in a single tennis point of S3G.  After 

confirming that both the states are present, the system finds all possible paths from ΩC to ΩF. Each clip in 

which the states satisfy the rank constraint is placed in ℚ = ⋂ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛−1

𝑘=0  as a clip that includes the path 

completely. The clips present in the list ℧=⋃ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑘=1

𝑘=0  are identified and this list is called approximate 

query results.  

 

Displaying Results. Similarly like in subsequent query, the events are played from StartTime of the initial 

state till the EndTime of the final state and paused at that point. The ℚ  and ℧ are displayed in the UI which 

clips have the similar meaning as in subsequent query.  

 

 

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003


Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76, 
doi:10.1016/j.jvlc.2015.03.003 

 

13 

 

5. Illustration of GStar. 

 

We have developed a simple user interface (UI) shown in Figure 4 for evaluating our GStar.  It consists 

of a query window where the actual tennis game video is played.  The window supports the user to build 

spatio-temporal query using gamepad.  The tennis court view is provided on the UI to guide the users in 

selecting positions for the ball and the players to build the query.  The UI consists of features “Next Query” 

for subsequent query, “Set Initial State”, “Query History”, “Eventually Query” for eventual query, and drop 

down lists QueriedClipList and OutputClipList.  

 

 
Figure 4: Snapshot of the User Interface, 
 

Setting Initial and Current States. When GStar is invoked initially, the system is designed to 

automatically play the video in the query window from the designated start point and pause at the beginning 

of the first serve.  For each video that is stored in the database, the player who serves first is designated as 

player1.  Figure 4 also shows the snapshot of the UI where the video is played and paused at the first serve.  

The icons of player2 and the ball are displayed on the query window.  In Figure 4, at the start of the first 

serve, player1 and ball are in location 7, and player2 is in location 10.  These locations taken together define 

the default initial state, Ω0, which is also the current state, ΩC, for query.  At this instant, GStar is ready to 

receive the locations of the ball and player2 as inputs for subsequent query.  The user has the option to 

change the default initial state by selecting “Set Initial State” feature. 

Setting the Initial State Explicitly. As mentioned earlier, the user may choose any desired state as initial 

state by selecting “Set Initial State” feature.  Figure 5 shows the snapshot of the UI after the user selects 

“Set Initial State” feature.  The query window displays icons for the ball, player1 and player2.  User can 

specify the initial state by moving the icons of the three icons of the objects to desired locations. 

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
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Figure 5: Snapshot after selecting the “Set Initial State” feature 

 

Setting the Next State. Figure 6 shows the snapshot after the user specifies a subsequent query starting 

from the default initial state or current state.   It can be seen that user has provided the ball location as 4 and 

player2 location as 10 by moving their respective icons to those locations.  The set of locations (7, 4, 10) 

defines the next state, ΩN.   The query is executed and clips containing the queried information are identified 

in S3G and retrieved from the database.  The query results are presented to the user (ℚ  and ℧) as shown in 

Figure 6.  After the execution of the query, (7, 4, 10) becomes the current state for the subsequent query to 

be built. 

 
Figure 6: Snapshot after building first query 

 

Query Results. Figure 7 shows the snapshot after executing a subsequent query which specifies (5, 8, 

10) as the next state, ΩN.  Note that ℧ contains the union of clips retrieved by executing both queries (1, 7, 

9, 13), and ℚ contains only those clips that are common to both queries (7, 9). 

http://www.sciencedirect.com/science/journal/1045926X
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Figure 7: Snapshot after the execution of two queries starting from the default initial state 

 

Setting the Final State for Eventual Query. For eventual query, the user selects “Eventually Query” 

feature on the UI.  GStar displays icons for the players and the ball and allows the user to specify locations 

Lb, L1 and L2 for ball, player1, and player2 respectively, using the features of the gamepad.  These locations 

are recorded as the initial state Ω0(Lb, L1, L2).  Figure 8 shows the snapshot in which the user has specified 

Lb as location 3, L1 as location 8, and L2 as location 6.  Similarly, the final state ΩF is specified as ΩF(Lb, L1, 

L2) = (2, 5, 9) as shown in Figure 9.   After the eventual query is executed the clips that contain the queried 

information appear in ℚ  and ℧ as described before. 

 

 
Figure 8: Snapshot after specifying the initial state for eventual query 

 

http://www.sciencedirect.com/science/journal/1045926X
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Figure 9: Snapshot after specifying the final state for eventual query. 

 

The “Query History” feature on the UI helps the user visualize what has been queried and what to 

query next by providing a summarized view of the events being queried (Figure 10). 

 
Figure 10: Snapshot of Query History window 

 

6. Usability Study. 

 

In this section, we evaluate the gamepad interface (as a gaming controller) whether it has an advantage 

over traditional mouse interface. The mouse interface (MI) uses point-and-click approach [2]. The 

underlying indexing structure is the same for both interfaces. The major differences are 1) the way inputs 

are taken from the users and 2) user interface for getting the inputs. The mouse interface provides a tennis 

court image with labels and enables selection of objects. The user first needs to select the object and the 

click the location on the court. To develop a state, this should be repeated for every object. On the other 

hand, GStar provides a small fragment of a tennis video to start and then the user provides input by 

controlling the objects (players and ball) in the video. The ISO standard (ISO, 1998) is used as the basis for 

the comparison study.  The ISO defines usability of a product as the “extent to which a product can be used 

by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction” (ISO, 1998). 

 

http://www.sciencedirect.com/science/journal/1045926X
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6.1 The Usability Study Environment. 

 

The study was conducted in the multimedia laboratory of the University of Alabama in Huntsville.  To 

ensure that the study was fair and unbiased, ten students were randomly asked to participate in the study.  

The students had no prior knowledge about the two user interface systems or their developers.  The 

familiarity with the gamepad or mouse interface was not considered while selecting users (students).  There 

are three stages of our usability study: training, practicing, and testing. 

Training. Two queries were developed for the purpose of training users so that they become familiar 

with the use of both user interface systems. First, each user was educated about spatio-temporal query, the 

two user interfaces, and the purpose of the study.    

Practicing. After training, users were given two learning queries and help was given on an as needed 

basis to make them comfortable to use the user interfaces.  A complex query is built by combining 

subsequent and eventual queries.   

Testing. For testing purpose, five test queries of different complexity were developed and the result 

for each of the five queries was recorded by an expert.  The complexity of the test queries ranged from a 

single subsequent query to a combination of subsequent and eventual queries.  This information was used 

later to determine if the users were able to accurately query the database.  Then the same test queries were 

given to each user and the user was asked to test both user interfaces.  No help was provided about the use 

of the interfaces during testing. Each user was asked to use both UI in alternating order to minimize the 

bias due to the tendency of getting adjusted or tuned well to the user interface that was used first.  All users 

were given unlimited amount of time to complete the task. 

 

6.2 Usability Metrics. 

 

The measures or metrics used to assess usability are grouped into three categories: effectiveness, 

efficiency and satisfaction. The effectiveness of a user interface is defined by ISO as the ability of the user 

to complete the specified task and obtain accurate results.  Therefore, ability to complete task, accuracy of 

task completion (ability to retrieve correct clips), and quality-of-outcome which is the measure of extent to 

which the interface positively engages the user by providing good feedback during the querying process 

even before presenting the final result are selected as metrics for measuring effectiveness. The efficiency 

of a user interface may be defined as the resources such as time, cost, user’s effort, etc. needed to achieve 

the goal.  For the study, learning time (time for the new user to learn to use the interface), testing time (time 

to complete all 5 queries), and input rate (number of inputs provided by the user – number clicks, number 

of window closings, etc.) are chosen as metrics to measure efficiency. Satisfaction measures overall 

appreciation and opinion about the system.  Preference (likelihood of using one interface over the other), 

ease-of-use (comfort in using the interface), and overall opinion are selected as metrics to measure user 

satisfaction. 

 

6.3 Usability Study Results and Analysis.  

 

This section presents the measurement data gathered for the assessment of effectiveness, efficiency, 

and satisfaction (the three measures of usability), and their analysis.   

 

Effectiveness:  In order to measure task completion ability, each user was given the same 5 queries.  If the 

user completed the query, the outcome was recorded as “completed”.  Otherwise, the outcome was recorded 

http://www.sciencedirect.com/science/journal/1045926X
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as “not completed”.  The clips retrieved by the user were checked for accuracy and recorded as “correct” if 

it matched the stored result obtained by the expert.  Otherwise, it was recorded as “incorrect”.  The results 

show that all users were able to complete the task and were able to retrieve correct clips using both 

interfaces.  

 

Efficiency:  Learning and testing time was measured in seconds.  After the completion of all five queries, 

the user was asked to rank input rate on a scale from 1 to 5 (1 – very low, 2 – low, 3 – average, 4 – high, 5 

– very high).  The minimum, maximum, and the average learning time for the GI and MI were (300, 840, 

and 500) and (360, 1020, and 666) seconds, respectively.  On an average, users took less time to learn 

gamepad interface over mouse interface.  The minimum, maximum, and average testing time to complete 

all five queries using GI were (152, 780, and 331) and (198, 940, and 364) seconds, respectively. The 

average scores received for input rate by GI and MI were 2.2 and 4.1, respectively.  Several features of the 

mouse interface contributed to high input rate.  First, the user had to deal with many windows that popped-

up during the query process.  During the execution of complex queries which consist of several states, the 

user had to move from one interface window to another to build the query incrementally.  Based on the 

measurement data, the users had better efficiency with the gamepad interface than the mouse interface.    

 

Satisfaction:  After completing all queries each user was asked to indicate his or her preference on a scale 

from 1 to 5 (1 – I definitely prefer MI, 2 – I prefer MI over GI, 3 – I have no preference, 4 – I prefer GI 

over MI, 5 – I definitely prefer GI).  The metric ease-of-use was also ranked on a scale of 1 to 5 (1 – very 

low, 2 – low, 3 – average, 4 – high, 5 – very high) for both user interfaces.  Finally, each user was asked to 

provide his or her opinion in his or her own words.   

 

Nine users prefer GI over MI and one user had no preference.  The average score for preference was 

3.7/5.0 which shows that the users preferred the gamepad interface over the mouse interface.  For ease-of-

use, all users ranked GI high (4) and MI average (3), respectively.  Since the sum of squares within groups 

is 0 and gamepad had better rating, the F-ratio becomes infinity for the ANOVA analysis. This rejects the 

null hypothesis and gamepad is considered better than mouse interface for ease-of-use. This indicates that 

the gamepad interface causes less user discomfort than the mouse interface.  All users liked and appreciated 

immediate and automatic feedback of realistic result provided by the gamepad interface.  One user said that 

GI provided smooth flow for building a query consisting of a sequence of states as there is no need to switch 

the interface window. Several users did not like the fact that too many windows pop-up while using the 

mouse interface.  Therefore, GI provided higher level of satisfaction to users than MI.  

 
6.4 Discussion.  

 
Extendibility. GStar can easily be applied if the spatio-temporal database can be represented with S3G. S3G 

requires that the spatio-temporal database can be split into states and states are linked through transitions. 

The transitions may be annotated as in tennis example in this paper. Similar S3G index can be built for 

sports games such as volleyball and table tennis, where players are restricted to a specific region. For other 

games, the discretization step is critical. Rather than building states for all players, states may be built for 

a team and ball object as in football (e.g., Team A at 49). For games like soccer, the video can be discretized 

based on when the game stops or based on specific actions of players. 
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Limitations of Mouse Interface. The current MI only provides a graphical layout of a tennis court to map 

objects to locations. It could have been improved by using the actual tennis footage. However, there is 

frequent camera motion in tennis videos. Therefore, the regions of locations change from one frame to 

another frame. This requires the alignment of frames or detection court lines in every frame. This was not 

required for the GI since there is a common region for a location in all frames. The gap between GI and MI 

interface may be reduced by also allowing MI to get inputs through the actual footage. 

  
6. Conclusion. 

 

This paper presents Query-by-Gaming with an innovative user friendly interface for retrieving the 

desired clips from tennis game video using a gaming controller.  Our GStar allows the user to build spatio-

temporal queries like subsequent and eventual.  Spatio-temporal queries built are applied to a graph-based 

indexing structure called S3G.  GStar works efficiently in retrieving the clips by mapping the user input 

from gamepad to the corresponding semantic information of the video available in S3G.  GStar allows the 

user to continuously build the query and provides partial query results from the video immediately and 

automatically.  GStar also maintains a history of all queries built by the user for the current session.  A 

usability study was result showed majority of the users preferred the gamepad interface over mouse 

interface. Our experimental setting had 10 students and 5 queries per interface. The true evaluation will 

turn out from the experiences of real users of the interface. 

Our usability study shows that Query-by-Gaming yields promising results for building spatio-temporal 

queries. As future work, Query-by-Gaming should be experimented on other types of spatio-temporal 

databases. Our index structure, S3G, is appropriate for Query-by-Gamepad since sequence of states can be 

tracked instantly. The applicability of Query-by-Gaming should be studied on other spatio-temporal index 

structures. The spatio-temporal queries in GStar are not typical range queries (e.g., find objects at a specific 

region within an interval). Query-by-Gaming is especially useful for evaluating queries that can be 

represented with linear temporal logic. The usability study in our experimental setting provided promising 

results. As future work, the usability study should be conducted when such a system is deployed for real 

environments. Moreover, gaming controllers provide trigger buttons that can sense how hard the button is 

pressed. Such triggers can be used to build queries that may require a numeric attribute value (e.g., speed 

of a ball or a car). Future work may utilize triggers for more complex queries. 
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