
Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

1

Query-by-Gaming: Interactive Spatio-Temporal Querying and Retrieval

Using Gaming Controller

Vineetha Bettaiah and Ramazan S. Aygun

Computer Science Department

University of Alabama in Huntsville

vineetha.bettaiah@gmail.com, aygunr@uah.edu

Abstract

Spatio-temporal querying and retrieval is a challenging task due to the lack of simple user interfaces

for building queries despite the availability of powerful indexing structures and querying languages. In this

paper, we propose Query-by-Gaming scheme for spatio-temporal querying that can benefit from gaming

controller for building queries. By using Query-by-Gaming, we introduce our spatio-temporal querying and

retrieval system named as GStar to interactively build subsequent spatio-temporal queries to determine if a

state is directly reachable from current state and eventual spatio-temporal queries to know whether a spatial

state is reachable from a current state. Queries are built using features of gaming controller by displaying

the original video frames rather than on a graphical interface using a mouse or a keyboard. GStar has three

main components: building the query, searching and retrieval of clips, and displaying query results. The

queries are applied to an indexing structure called semantic sequence state graph (S3G) and results of the

query are displayed dynamically to provide timely feedback to the user. Experimental results and user

interface are provided for a tennis video database. Users define desired game state (player and ball position)

using an interactive interface at multiple points in time and GStar automatically retrieves all rallies that

contain both states. Finally, the user interface evaluation comparing gamepad-based interface and mouse

interface for spatio-temporal querying has been studied.

1. Introduction.

Spatio-temporal querying is the process of retrieving spatio-temporal objects and events that span

space and time domains. Each object may change its position and its relationship with other objects

continuously over time due to events or natural phenomena. As time and space are both continuous domains,

the number of states in which a spatio-temporal system can exist might be infinite. Therefore, capturing

and representing various states of the system and influencing events that cause state transitions along with

semantics is challenging. The design of a good spatio-temporal query system should consider the following.

1) Representation. The methodology used to model the spatio-temporal system must be

sophisticated enough to capture the semantic information into a representation of manageable

size and structure.

2) Query building. Unlike traditional database queries, spatio-temporal queries request semantic

information based on user’s interpretation. Often, the query is complex consisting of several

related events and interactions. Therefore, the system should allow the user to build the query

methodically through an environment that will guide the user step-by-step to build a spatio-

temporal query without knowing the internal representation of the data to retrieve a sequence

of events which causes the specified action.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003
mailto:vineetha.bettaiah@gmail.com
mailto:aygunr@uah.edu

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

2

3) Simplicity. The spatio-temporal query system must provide a user friendly interface that is

easy to use. The interface must be intuitive and must not require the user to know the internal

representation of the semantic information. This allows changes and upgrades to the internal

representation of the system without affecting the user interface.

1.1 Related Work

Spatio-temporal querying and retrieval has been studied by researchers. The research involves

developing spatio-temporal querying languages and interfaces for building spatio-temporal queries. In

addition, we briefly mention challenges of incorporating temporal constraints.

Spatio-Temporal Query Languages. Developing querying languages is important for experts to

query the database. If visual interfaces are developed for building queries, these visual queries can be

mapped to the querying language. There has been significant effort on querying spatio-temporal databases.

The STQL (Spatio-Temporal Query Language) [3] is developed to demonstrate how SQL can be extended

to query changes of spatial objects over time. It extends SQL by adding features and a mechanism to

support complex spatio-temporal predicates (disjoint, meet, overlap, coveredBy, covers, inside, contains).

STQL is based on select-from-where clause by integrating predicates into SQL. A survey of qualitative

spatial reasoning is provided to represent key calculi for describing a set of spatial relationships related to

direction, distance, shape, moving objects, and uncertainty [33]. Moving GeoPQL [23] is an extension of

Geographical Pictorial Query language. Spatio-temporal queries are formed by adding temporal layers and

defining temporal properties of spatial objects. The temporal SOLAP (GIS+online analytical system)

includes a temporal language named TPiet-QL [26]. Although the proposed system in [26] has a powerful

way of visualizing results, the application interface accepts queries in textual TPiet-QL format. Jain et al.

[9] use pattern matching properties of SQL to express spatio-temporal queries. Since the data is represented

as strings based on a grammar, it is possible to apply pattern matching techniques.

User Interfaces for Spatio-Temporal Querying. Since learning about the query language is hard for

traditional users who query and update the database using standard types of queries and updates called

canned transaction [32], such users rather rely on a sophisticated user interface for building queries. The

user interface for visual query languages usually uses icons to represent objects. The user selects objects

and specifies the desired interactions by choosing the operators supported by the system. Penna et al. [12]

propose a SQL-like SRQ (spatial relation query) by allowing users to arrange visual information (without

temporal information). Liu et al. [13] describe a visual graph based query interface that has 4 rectangular

boxes to define variables, conditions, video attributes and scenes, and 2 connections to link variable boxes

or scene boxes. Such an interface helps to define textual queries with the user interface however declaring

spatio-temporal component via variable connection may not be easy for users. Certo et al. propose a visual

time automaton for building time queries. Although their system supports queries at different temporal

granularities and simplifies query building, the users may need to learn about building basic automata [14].

The user interface in [17] supports multi-DST (dynamic spatio-temporal) queries and enables users to select

multiple regions with corresponding intervals for a specific object to generate spatio-temporal queries. Naik

et al. [10] provides a user interface for querying tennis video databases. The user chooses (or clicks) the

locations of players and the ball on the available interface for each instance in the query. However, point-

and-click approach using a graphical court view is tedious since it requires both choosing player/ball objects

and their locations, and such an interface does not provide an intuitive method of building queries. A query

is built by providing a sequence of states (object-location pairs) but not necessarily consecutive and then

linking those states by actions of objects. The output of a query is a clip that contains the sequence of states

with corresponding actions. In [27], the queries are categorized into regional, fuzzy spatio-temporal, and

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

3

trajectory queries and a button is provided for each type of a query (e.g., find regions of an object for a

specific interval).

Query-by-Example. Since the users may not know the internal representation of database, the users

may use a) similar examples by browsing the database, b) provide what the result should look like by

generating a sample scenario using the interface or c) sketch the components and interactions of objects in

a query. Papadias et al. [30] propose a pictorial query-by-example that helps to retrieve or define direction

relations from symbolic images. The user is able to develop queries such as “retrieve all sub-images where

object X is northeast of object Y.” The QBIC (Query by Image Content) [30] supports querying based on

image and video content based on color, shape, texture, and sketches. The QBIC system allows users to

define their queries based on actual images from the database and a graphical interface that provides

drawing and selecting. Query by sketch in QBIC allows user to draw main lines and edges in an image by

freehand and template matching is applied based on the reduced-resolution edge map. For music retrieval,

query-by-humming [31] enables users to query an audio database by representing the melodic information

in a song as relative pitch changes. Similar query-by- concept was also applied for spatio-temporal

querying. Query-By-Trace (QBT) [4], Visual Interactive Query Interface [6] and Visual Query system S-

TVQL [5] are examples of visual interfaces for spatio-temporal databases. QBT [4] interactively and

graphically produces a sketch from a derived spatio-temporal predicate. The user inserts objects freely (line

or area) in an area and defines the movement of each object by sketching the path. A query includes several

such traces which determine the spatial relations between the objects. Query-by-Trace allows users to

define topological relationships for regions and trajectories on a 2D screen where x-axis indicates the spatial

component and vertical axis indicates the temporal dimension. For example, a user may draw an evolving

region such as a hurricane and then draw trajectory of flights that go through a hurricane for a query “find

flights that go through hurricanes.” The user interface of STVQL [6] presents the database in the form of

maps and list of attributes. The user selects the element of the query by clicking on the desired attributes.

Based on the selected attributes all valid operators are displayed in the interface. The underlying DBMS is

relational with spatial capabilities. The valid-time temporal information of an object is stored as explicit

time attributes (from, to). In [16], iconic visual querying allows user to drag 3D icons to a scene editor and

provide relative positions of the objects. The object motions are captured using multi-track metaphor where

the trajectory of an object is captured as the user moves the object. The motion of multiple objects are

synchronized with respect to relative manual dragging speed of the user. Although such a scenario is

beautiful, the user needs to build the query from scratch and the order of object motions may not be

preserved due to rough synchronization among trajectories.

Temporal Constraints of Spatio-Temporal Queries. The interface of Mars [18] lets the user choose

the spatial location on a map by using map functions and find microblogs in the last specific number of

hours by providing the time value along with a weight between distance and time. Although statistical

results can be provided in Mars, the interface only accepts a position of interest and a single time interval.

Such an interface may not be effective if the number of spatio-temporal intervals is more than two. The

spatio-temporal interface for analyzing taxi trips in New York City [19] enables selection of regions on a

map and selecting either temporal interval or a hierarchy of temporal intervals (years, months, days, and

times of days). Such interface does not support spatio-temporal querying for multiple moving objects

simultaneously. The STEWARD [20] and Newsstand [22] systems execute spatial components of a spatio-

temporal queries at the server side. The temporal component is executed by a slider that indicates the

interval but it suffers from poor updates of the query results during interactivity if spatial results are not

indexed properly. The VacationFinder system [21] helps to analyze where people are traveling based on

twitter messages by choosing spatial location and choosing two temporal intervals. So this type of system

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

4

limits spatial and temporal components of a query. Spatio-temporal Pseudo-Relevance Feedback system

[24] accepts temporal condition in textual form. The spatio-temporal search of crowd sourced information

[25] only accepts beginning and ending date for the temporal dimension of a spatio-temporal query. The

Murmur project [28] supports querying time-varying attributes using a time travel facility for geo-

databases. The time travel facility provides the map and thematic view at an instant and also supports

animation of the map similar to a movie-map for a time interval. The continuous querying component of

the PLACE (Pervasive Location-Aware Computing Environments) [29] proposes sliding-window concept

to support temporal expiration. For example, an object that satisfies the temporal condition such as “within

one hour” may not be part of the query result in future time. The PLACE system focuses on continuous

querying and only one temporal interval is supported.

1.2 Our Method

One of the challenges in spatio-temporal querying is to provide spatio-temporal information about

multiple objects in a synchronized or ordered way. The multiple trajectory-based queries, it may not check

the concurrent progress of trajectories. For example, for a simple query like “ find videos where object A

moves to X as object B moves to Y and then object A moves to Y as object B moves to Z” requires inputting

partial temporal constraints of a query carefully. The order of events of multiple objects is important for

spatio-temporal querying. In gaming, multiple objects can be controlled in a simple way by changing the

object in control. Our proposed method utilizes linear temporal logic for building temporal constraints and

benefits from gaming in the way spatio-temporal inputs are provided to video games.

Linear Temporal Logic. In Linear Temporal Logic (LTL), two important temporal operators are next

(○) and eventually (◊). The ‘next’ operator allows checking whether a condition is true in a subsequent state

whereas the ‘eventually’ operator allows checking whether a condition eventually becomes true. Based on

these operators, we propose subsequent spatio-temporal querying for the ‘next’ operator and eventual

spatio-temporal querying for the ‘eventually’ operator. We represent spatio-temporal data as a sequence of

states, where each state is determined by a unique set of object-location pairs. An event causes the system

to transition from present state to next state, and is represented as an arc between the two states. The

subsequent queries involve building the query in a step-by-step manner and eventual queries involve

specifying two states and retrieving all sequence of events that takes the video from the first state to the

final state. In other words, eventual query checks whether a state is reachable from a current state.

Motivation for Using a Gaming Controller. We observe that an environment that gets spatio-

temporal input from the users is video games. In these games, spatial and temporal movements of the

elements are provided by the user using a gaming controller. Gaming controllers can be used with some

basic knowledge about the rules of the game by a broad domain of users from 4-year old kids to 70-year

old people. In this study, we adapt this idea for building spatio-temporal queries.

Query-by-Gaming. In this paper, we propose a novel spatio-temporal querying and retrieval system

named as GStar using a methodology similar to the one in gaming by getting user interactions through a

gaming controller. We name our querying scheme as Query-by-Gaming. GStar supports Query-by-Gaming

and provides approximate querying for partial match of user queries. Our GStar is tested on tennis videos.

GStar supports subsequent and eventual queries and has three components: building the query, searching

and identification of clips, and displaying query results. For a tennis video, a 'clip' correspond to all events

in a tennis point from serve until one of both player scores a point. Semantic sequence state graph (S3G)

[10] is used as an indexing structure to which the queries are applied. Our technique has an advantage over

Query-By-Example systems [7] since the user does not need to search for a similar image or video to start

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

5

the query and also has an advantage over sketch-based systems [8] since the user may not know how the

actual video looks like or how sketches are mapped by the querying system. In this work, we choose

gamepad as a gaming controller and compare it with the mouse interface.

The fundamental difference in our user interface from other interfaces is building the query. The main

idea can be briefly summarized as follows:

1. The user will generate the query as if he or she plays a game.

2. As the user provides the commands to the system, the system works on two components:

a. The system finds the best video clip and provides (shows and plays) it to the user instantly

so that the user can continue to build query based on the current scene.

b. The system searches for data that fits the user query and stores them to show to the user

when the query is complete.

Our contributions can be summarized as follows:

 Use of a gaming controller for spatio-temporal querying,

 Support for subsequent and eventual queries,

 Approximate querying for spatio-temporal queries, and

 Interactive and incremental query building by presenting actual video (database) objects.

This paper is organized as follows. Background on spatio-temporal logic, semantic modeling and

indexing is provided in Section 2. Section 3 provides the overview of our system. Section 4 presents the

Query-by-Gaming in GStar. Section 5 presents illustrations of applying queries to tennis game video.

Section 6 provides usability study of the user interface. The last section concludes the paper.

2. Background.

In this section, we provide information about the background of our GStar system. Our system uses

spatio-temporal logic, semantic modeling and retrieval system (SMART) and our semantic sequence state

graph (S3G) for the retrieval of videos from a tennis video database. These are briefly described below.

2.1 Spatio-Temporal Logic

Temporal logic helps to specify the temporal properties of a system. If the temporal information can be

described as a path of vertices such as S0, S1, …, Sn where each Si corresponds to an instant in time, linear

temporal logic (LTL) [15] can be used to analyze such a system. Our system is based on the spatio-temporal

logic described in [16]. A state diagram Ξ is a finite set of states where each state is represented by a node

and events that cause state transitions are represented by directed arcs. There is an event corresponding to

each state transition. The temporal assertion, Ψ:=(Ξ, S) ╞ Φ, states that for the state diagram Ξ and the

current state (or condition) S, the temporal formula Φ is satisfied. In other words, the system is evaluated

to check if Φ holds or not with respect to the current state. The temporal formula can be generated using

Boolean operators such as ¬, , , and temporal operators such as next (○), eventually (◊),global (□),

until (U), and releases (R). A temporal formula can be expressed as:

 Φ := θ | ¬ θ | θ1 θ2| θ1 θ2| θ1 θ2 | □ θ |○ θ |◊ θ | θ1U θ2 | θ1R θ2

This study focuses on next and eventually operators. These are briefly described as follows:

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

6

 Next. The notation for the next operator is “X” or “○”. Xθ or ○θ checks the correctness of the

condition θ to be satisfied in the next state. If the current state is Si, (Ξ, Si) ╞ ○θ states that θ

becomes true in the next state of the graph Ξ starting from the current state Si.

 Eventually/Finally. The notation for the eventually operator is “F” or “◊”. Fθ or ◊θ indicates

that there exists a state reachable from the current state where the condition θ is satisfied. If the

current state is Si, (Ξ, Si) ╞ ◊θ states that θ becomes eventually true in the graph Ξ starting from

the current state Si.

2.2 Semantic Modeling and Retrieval System (SMART).

The semantic content of a video represents high-level information in the video which is of interest to

viewers. In general, viewers are interested in objects, events, sequence of events and the resulting spatio-

temporal interactions among objects in the video. SMART [1,9] is a system developed for modeling and

retrieval of semantic contents in a tennis video. SMART models the semantic contents of a tennis video

using a set of objects, a set of events, a set of locations on the court besides a set of camera views and a set

of production rules which are given in [1].

Objects: The set of objects ΣO consists of three objects: the ball b, the first player U and the second player

V:

 ΣO = {U, V, b}.

Events: The set of events ΣE consists of two distinct events: the forehand shot F, and the backhand shot B:

 ΣE = {F, B}.

Locations: The tennis court is divided into 13 non overlapping regions including the net N as shown as

legend in Figure 1. The set of locations ΣL includes all these 13 regions:

 ΣL = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, N}.

Using the production rules, the semantic contents of the video are encoded as a set of strings, one

string for each clip, and stored in the database.

2.3 S3G - Semantic Sequence State Graph.

The semantic sequence state graph (S3G) [2, 10] represents the same information in the form of a

graph. In tennis video, each object (ball, player1, player2) can be in any of the 13 possible locations

theoretically. Each assignment pattern defines a unique state in S3G, and the number of states in S3G is

less than 133 due to game constraints. An event from the set of all possible events Σ = {F1 (player1 hits

forehand), F2 (player2 hits forehand), B1 (player1 hits backhand), B2 (player2 hits backhand)} makes the

objects move causing state-to-state transitions. Note that S3G may have cycles as a state may be visited

many times during the game. Thus, in S3G, the semantic information of a clip is represented by a sequence

of states and transitions, starting from one of the 8 possible states (four serve locations and two players).

The semantic information of all clips, together, represents the semantic information of the video.

Example: Consider three clips M1 = A[U] C[U7b7V10 b4 V4], M7 = A[U] C[U7b7V10 b4 BV10 b5 BU7

b4 V4], and M10= A[V] C[U7b10V10 b7] of a video. In these string representations of SMART, A

indicates close-view camera and C indicates the court view. In M1, Player1 serves an ace from location 7

as Player2 moves to location 4 to receive. M7 begins with a good serve from Player1 from position 7.

Player2 hits a backhand shot and sends the ball to location 5. Player1 in location 7 returns the ball to location

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

7

4 by hitting a backhand shot. In M10 player2 serves from location 10 to location 7. The S3G in Figure 1

represents the semantic information in the three clips described above. For example, nodes S1, S4 and the

state transition from S1 → S4 represent the clip M1.

Figure 1: Construction of S3G from SMART string data.

The temporal order of states in M1 is (S1, S4) indicating that S1 is the first state and S4 is the second

state. Similarly, temporal orders of states in M7 and in M10 are (S1, S2, S3, S4) and (S5, S1), respectively.

Each clip is attached a list of temporal orders (ranks) of the state as shown in Figure 1 by dotted red squares.

These temporal orders or ranks should be checked to see if states appear consecutively in a clip. Firstly,

clips common to all states involved in the query are selected. Then, clips in which states do not satisfy the

temporal order constraints are deleted. Timings of these ranks are stored in the database. For example,

time of S1 in clip M1 may be at 127th second, time of S4 in clip M1 may be at 129th second. Hence the

event, player1 hits a forehand shot from S1 to S4 starts from 127th second and ends at 129th second. These

are represented as StartTime and EndTime for each event, respectively.

We have analyzed the performance of S3G for retrieving as well as inserting into the index structure.

Each node keeps the set of clips that has the corresponding state. Whenever the user provides a query for a

specific node, the index structure is used similar to a finite state machine. Given a specific transition, the

next state is reached instantly. The next state includes the sets of clips containing that state. The complexity

of reaching the next state in S3G is O(1). Locating a specific state has also time complexity of O(1) using

hashing. We do not search the clips but we search the states of the index structure. Then the corresponding

clips of the state are automatically retrieved. Given a state, getting the list of clips that contain the state is

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

8

instantaneous since that list of clips are maintained at the node. Similarly, the set of clips that satisfy the

next state can be determined instantaneously. The ranks of clips in consecutive states are checked to make

sure that they appear back to back in the same clip. Checking ranks is equivalent to finding the intersection

of sets. The complexity of finding intersections is based on the size of these small sets. If the sizes of two

sets are m and k, then the complexity is O(m+k) and if m≥k it can be stated as O(m). Similar case applies

for applying union of sets. If the intersection of sets is included, the time complexity becomes O(m);

however, note that m is very small with respect to the total number of clips. Detailed discussion of

experiments and time complexity analysis can be found in [10].

Display
Video
Frame

Set Initial
State

Si

Set New
State

Sn

Video
DB

Gamepad
S3G

Index

Search Sn in
S3G

Build a query
history &
Identify

relevant clips

Select Clip C
for display

Play &
Pause at a
frame of C SHOW Query

Results

QUERY
BUILDING

QUERY
PROCESSING

INDEXING & DB

Figure 2: Components of GStar

3. System Overview

The two major parts of our system, query building unit and query processing unit, use the indexing

structure and the database. The general framework of the system is provided in Figure 2. The main idea of

our methodology is to map inputs from a gaming controller to a spatio-temporal query. The user controls

or specifies the location of one object at a time. Using a gaming controller, the user may move object oi

from location Lm to Ln. This implies that “find video clips where object oi moves from location Lm to Ln”.

The query building block or unit of Figure 2, as soon as the system gets the new state information from the

gaming controller, searches the database to determine whether there is any video clip in the database in

which the specified transition occurs. If such clip or clips exist, the Indexing & DB unit provides one clip

(or a fragment of a clip) to the query building unit. The query building unit plays the clip and pauses for the

user to input the next subquery. The query building continues in this manner one subquery at a time. On

the contrary, the query processing unit keeps track of all clips and sequences of clips that satisfy all

subqueries specified so far. As the number of subqueries increases, the number of video clips maintained

by the query processing unit decreases. When the user is done with building the query, the user may choose

to see all clips that satisfy his or her query.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

9

4. Query-By-Gaming in GStar.

In order to build spatio-temporal queries to retrieve video clips, it is important to provide a user

friendly interface that is easy to use. A web-based platform independent interface [9] relies heavily on drop

down menus to build SQL queries. A court-view and point-and-click approach is provided to specify the

query in [2]. The annotated videos are maintained as SMART strings in our database. The annotation was

initially done manually. We have later used a player template (a sample image of a player from the video)

to track the location of players. Our GStar, which builds the queries using gaming controller to retrieve

clips from tennis game video, looks similar to playing the game itself. Our approach is motivated by the

following: a) gaming controllers are common user interface devices in gaming environments where user

provides spatio-temporal inputs of the elements and b) gaming controllers with multiple buttons and

different types of interface features like trigger, directional controls are, usually, more suitable to provide

spatio-temporal inputs as compared to other devices like keyboard and traditional mouse.

We have chosen gamepad as a gaming controller in this research. The buttons or features of a gaming

controller should be mapped to the semantic information in S3G. After providing how a gaming controller

such as a gamepad can be used for spatio-temporal queries, we explain how spatio-temporal queries are

built.

4.1 Features of Gamepad.

The gamepad along with other features includes a cluster of 10 buttons B = {b1, b2, …, b10}, an 8-way

switch A, a record button R and a record/search button R/S as shown in Figure 3. The features, switch A,

record R and record/search R/S are used in GStar to build spatio-temporal queries.

Figure 3: Features of gamepad

4.2 Mapping Gamepad Input to Semantic Information in S3G.

Mapping input obtained from the gamepad to the semantic information that the tennis video represents

forms an integral part in retrieving clips that contain the queried events. Queries are provided using the

features of the gamepad, and each feature (a button of B, 8-way switch A, etc.) of the gamepad generates a

unique numerical input when pressed. Based on the game context these values are mapped appropriately

to semantic information. For example, the input values from the 8-way switch are mapped to the direction

of movement of the object on the tennis court while building the query. Thus GStar builds the query and

applies as input to the indexing system, S3G.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

10

4.3 Building Spatio-Temporal Queries Using Gamepad.

A tennis match is composed of sets, and sets in turn are composed of games. Games are composed of points.

In our database, each point corresponds to a clip. The process of building and retrieval of clips involves

three main steps. First, spatio-temporal queries are built interactively using the gamepad. Secondly, a

search process is initiated to find clips having interesting events using our graph based indexing structure

(S3G). And finally, the video clips identified by S3G are fetched from the database and presented to the

user. We explain how subsequent queries and eventual queries are implemented in GStar. GStar supports

their combinations as well.

4.3.1 Subsequent Query.

The three main steps involved in building the subsequent query are detailed below.

Specifying States. The first step in building the query starts with a tennis game video being played in a

window.

1. Query video initialization. The chosen (or default) video is played from designated start point and

paused at the beginning of the first serve. The window used for playing the video is also used as

the query window to position the ball and the players while building the queries.

2. Setting the initial state. GStar allows the user to select any state as an initial state, Ω0, to start up

the query process by selecting the “Set Initial State” feature on the user interface. Selection of this

feature allows the user to select a specific location for ball and the two players. These locations

taken together become Ω0. L1 (Player1) location is selected first using switch A followed by

pressing switch R to record its location. This is followed by selecting Lb (ball location) and L2

(Player2) in a similar way. Finally pressing switch R/S to record L2 also triggers a search process

in S3G to verify the presence of the initial state, Ω0.

3. Identify and set the initial and current states. If the initial state is not set explicitly, the location of

the two players (L1 and L2) and the ball (Lb) are registered when the video is paused at the first

serve. These values taken together (Lb, L1, and L2) represent the initial state, Ω0. In other words, the

current state of the game (ΩC) is initially represented by Ω0. The user can start building the query

from Ω0 or the user has the option to specify an arbitrary state as ΩC.

4. Set the next state. After deciding on the current state (ΩC), the user begins building the query by

specifying the ball and player positions for the next state, Ω𝑁.

a. Specifying the ball position. This is accomplished by moving the ball icon to the desired

position with the help of switch A, and by using button R to record the ball’s location in Lb.

The user is given constant visual feedback of the movement of the ball by displaying ball icon

in query window.

b. Specifying the players’ positions. After specifying the ball location, the gamepad features are

used to specify the location of the player who receives the ball. Again, the visual feedback of

the player’s position on the court is provided to the user by displaying an icon that represents

the player in the query window. After choosing the desired location, R/S switch is used to

record the player location (L1 or L2).

c. Initiate the search for the next state. The next state, Ω𝑁, is represented as (L1, L2, and Lb) and

search for this state starts.

This completes the building of the first query, which specifies the desired ball and player location for the

subsequent state (NextState).

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

11

Finding Clips Satisfying the State Sequence. Let Ω𝐶 and Ω𝑁 denote the current state and next state,

respectively. Let 𝐶𝑖 represent the clips in Ω𝑖 and each clip 𝑐𝑖,𝑚 ∈ 𝐶𝑖has a rank denoted as 𝑟(𝑐𝑖,𝑚) that

represents its relative order in its actual clip. 𝜇(Ω𝑖, Ω𝑘) denotes the set of directed edges from state Ω𝑖 to

state Ω𝑘, and its cardinality is denoted with |𝜇(Ω𝑖, Ω𝑘)|.

1. Check reachability of the next state from the current state. If |𝜇(Ω𝐶 , Ω𝑁)| ≥ 1, then there might be

a common clip between them. However, the presence of the common clip needs to be verified.

a. Check the presence of common clip. The set of common clips between Ω𝐶 and Ω𝑁 can be

found using 𝐶𝐶,𝑁 = 𝐶𝐶 ∩ 𝐶𝑁.

b. Check whether the states appear back to back. After finding a common clip, it needs to be

verified whether states Ω𝐶 and Ω𝑁 appear back to back in the clips using the rank of

common clip(s) in Ω𝐶 and Ω𝑁. The set of satisfying clips is found as

𝐶𝐶,𝑁
̅̅ ̅̅ ̅̅ = {𝑐𝑝|((𝑐𝑝 ∈ 𝐶𝐶) ∧ (𝑐𝑝 ∈ 𝐶𝑁)) ∧ (𝑟(𝑐𝑝,𝑁) = 𝑟(𝑐𝑝,𝐶) + 1)}

2. Return the query results. Assume that the states that are involved in a query are Ω0, Ω1, Ω2, …,

Ωn. The output of the query returns

ℚ = ⋂ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑛−1

𝑘=0

Besides returning the actual clips, GStar also returns the union of common clips with proper rank

information from each state to the next state as the query is built:

℧ = ⋃ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑘=1

𝑘=0

For example, if C0 = [1, 7, 8, 9], C1 = [7, 8, 9, 13], and C2 = [8, 9, 13] then 𝐶0,1
̅̅ ̅̅ ̅ = [7, 8, 9] and 𝐶1,2

̅̅ ̅̅ ̅ =
[8, 9, 13]. Here, we just ignore the rank information for simplicity. Therefore, ℚ = [8,9] whereas ℧ =
[7,8,9,13]. The set ℧ gains importance when ℚ is empty. By using ℧, it may be possible to see a set of clips

that satisfy the spatio-temporal query partially. Therefore, the set ℧ provides results for approximate

querying.

Displaying Results. There are two aspects of displaying query results: query building and query outputs. As

the user builds a query, the best clip that satisfies the query is chosen to be displayed to proceed building

the query. When the query user completes the query, the user may want to see the list of all clips that

satisfies his or her query. To achieve these two aspects of display, at all stages of the query process GStar

displays a variety of information that may be of interest to the user. The StartTime and EndTime of every

event in a clip are available in the database. Using this information the system retrieves and plays the events

between the queried states in the query window easily. This allows the user to visualize each event

immediately if the event is present.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

12

 Displaying a Sample Satisfying Clip for the Query Building Interface. GStar automatically pauses

the tennis game video at the EndTime of the event allowing the user to build the subsequent query.

After the execution of each query, the next state (Ω𝑁) of the current query becomes the current state

(Ω𝐶) for the subsequent query. The query process may continue until the user wishes or the query

result (ℚ) becomes empty. As the user develops the query by adding new states, ℚ becomes

smaller and smaller. If the query process terminates since ℚ = ∅, then there is no clip that contains

the events between all the queried states. On the other hand, if |ℚ| ≥ 2, there is more than one clip

that satisfies the query at the current stage. In order to maintain continuity and smoothness during

the visualization of events while building the query, the system, if possible, plays the current event

from the same clip from which the immediately previous event was played. If the current event is

not present in the clip of the previous event then it is played from another clip chosen randomly

from ℚ. In this case, the continuity and smoothness may be lost.

 Displaying Output Query Results. GStar provides the list of clips in ℚ and ℧ in the user interface.

Each clip in ℚ satisfies all the subqueries of the spatio-temporal query whereas each clip in the

℧ − ℚ has events that satisfy some of the subqueries.

4.3.2 Eventual Query.

In our previous work, we present basics of eventual query [11]. It has similar steps as in building the

subsequent query. Rather defining the next state that will happen right after the current state, the eventual

query defines the final state that may be reachable after a series of states from the current state. Since the

steps involved in building the eventual query are similar to the steps of subsequent query, they are just

summarized below.

Specifying States. The eventual query is built by selecting “Eventually Query” feature on the UI and

specifying an initial state (Ω0) and a final state (ΩF). GStar displays icons for all three objects in locations

corresponding to the current state. The user may select current state as the initial state and record Ω0(Lb,

L1, L2) by pressing R/S button or may specify an arbitrary initial state in a way similar using the “Set Initial

State” feature. Similarly, the final state ΩF(Lb, L1, L2) is also specified using switch A, buttons R and R/S.

Finding Clips Satisfying the State Sequence. The query built is executed to determine if there is a sequence

of consecutive events from the current state, ΩC, to the final state, ΩF, in a single tennis point of S3G. After

confirming that both the states are present, the system finds all possible paths from ΩC to ΩF. Each clip in

which the states satisfy the rank constraint is placed in ℚ = ⋂ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑛−1

𝑘=0 as a clip that includes the path

completely. The clips present in the list ℧=⋃ 𝐶𝑘,(𝑘+1)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅𝑘=1

𝑘=0 are identified and this list is called approximate

query results.

Displaying Results. Similarly like in subsequent query, the events are played from StartTime of the initial

state till the EndTime of the final state and paused at that point. The ℚ and ℧ are displayed in the UI which

clips have the similar meaning as in subsequent query.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

13

5. Illustration of GStar.

We have developed a simple user interface (UI) shown in Figure 4 for evaluating our GStar. It consists

of a query window where the actual tennis game video is played. The window supports the user to build

spatio-temporal query using gamepad. The tennis court view is provided on the UI to guide the users in

selecting positions for the ball and the players to build the query. The UI consists of features “Next Query”

for subsequent query, “Set Initial State”, “Query History”, “Eventually Query” for eventual query, and drop

down lists QueriedClipList and OutputClipList.

Figure 4: Snapshot of the User Interface,

Setting Initial and Current States. When GStar is invoked initially, the system is designed to

automatically play the video in the query window from the designated start point and pause at the beginning

of the first serve. For each video that is stored in the database, the player who serves first is designated as

player1. Figure 4 also shows the snapshot of the UI where the video is played and paused at the first serve.

The icons of player2 and the ball are displayed on the query window. In Figure 4, at the start of the first

serve, player1 and ball are in location 7, and player2 is in location 10. These locations taken together define

the default initial state, Ω0, which is also the current state, ΩC, for query. At this instant, GStar is ready to

receive the locations of the ball and player2 as inputs for subsequent query. The user has the option to

change the default initial state by selecting “Set Initial State” feature.

Setting the Initial State Explicitly. As mentioned earlier, the user may choose any desired state as initial

state by selecting “Set Initial State” feature. Figure 5 shows the snapshot of the UI after the user selects

“Set Initial State” feature. The query window displays icons for the ball, player1 and player2. User can

specify the initial state by moving the icons of the three icons of the objects to desired locations.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

14

Figure 5: Snapshot after selecting the “Set Initial State” feature

Setting the Next State. Figure 6 shows the snapshot after the user specifies a subsequent query starting

from the default initial state or current state. It can be seen that user has provided the ball location as 4 and

player2 location as 10 by moving their respective icons to those locations. The set of locations (7, 4, 10)

defines the next state, ΩN. The query is executed and clips containing the queried information are identified

in S3G and retrieved from the database. The query results are presented to the user (ℚ and ℧) as shown in

Figure 6. After the execution of the query, (7, 4, 10) becomes the current state for the subsequent query to

be built.

Figure 6: Snapshot after building first query

Query Results. Figure 7 shows the snapshot after executing a subsequent query which specifies (5, 8,

10) as the next state, ΩN. Note that ℧ contains the union of clips retrieved by executing both queries (1, 7,

9, 13), and ℚ contains only those clips that are common to both queries (7, 9).

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

15

Figure 7: Snapshot after the execution of two queries starting from the default initial state

Setting the Final State for Eventual Query. For eventual query, the user selects “Eventually Query”

feature on the UI. GStar displays icons for the players and the ball and allows the user to specify locations

Lb, L1 and L2 for ball, player1, and player2 respectively, using the features of the gamepad. These locations

are recorded as the initial state Ω0(Lb, L1, L2). Figure 8 shows the snapshot in which the user has specified

Lb as location 3, L1 as location 8, and L2 as location 6. Similarly, the final state ΩF is specified as ΩF(Lb, L1,

L2) = (2, 5, 9) as shown in Figure 9. After the eventual query is executed the clips that contain the queried

information appear in ℚ and ℧ as described before.

Figure 8: Snapshot after specifying the initial state for eventual query

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

16

Figure 9: Snapshot after specifying the final state for eventual query.

The “Query History” feature on the UI helps the user visualize what has been queried and what to

query next by providing a summarized view of the events being queried (Figure 10).

Figure 10: Snapshot of Query History window

6. Usability Study.

In this section, we evaluate the gamepad interface (as a gaming controller) whether it has an advantage

over traditional mouse interface. The mouse interface (MI) uses point-and-click approach [2]. The

underlying indexing structure is the same for both interfaces. The major differences are 1) the way inputs

are taken from the users and 2) user interface for getting the inputs. The mouse interface provides a tennis

court image with labels and enables selection of objects. The user first needs to select the object and the

click the location on the court. To develop a state, this should be repeated for every object. On the other

hand, GStar provides a small fragment of a tennis video to start and then the user provides input by

controlling the objects (players and ball) in the video. The ISO standard (ISO, 1998) is used as the basis for

the comparison study. The ISO defines usability of a product as the “extent to which a product can be used

by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction” (ISO, 1998).

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

17

6.1 The Usability Study Environment.

The study was conducted in the multimedia laboratory of the University of Alabama in Huntsville. To

ensure that the study was fair and unbiased, ten students were randomly asked to participate in the study.

The students had no prior knowledge about the two user interface systems or their developers. The

familiarity with the gamepad or mouse interface was not considered while selecting users (students). There

are three stages of our usability study: training, practicing, and testing.

Training. Two queries were developed for the purpose of training users so that they become familiar

with the use of both user interface systems. First, each user was educated about spatio-temporal query, the

two user interfaces, and the purpose of the study.

Practicing. After training, users were given two learning queries and help was given on an as needed

basis to make them comfortable to use the user interfaces. A complex query is built by combining

subsequent and eventual queries.

Testing. For testing purpose, five test queries of different complexity were developed and the result

for each of the five queries was recorded by an expert. The complexity of the test queries ranged from a

single subsequent query to a combination of subsequent and eventual queries. This information was used

later to determine if the users were able to accurately query the database. Then the same test queries were

given to each user and the user was asked to test both user interfaces. No help was provided about the use

of the interfaces during testing. Each user was asked to use both UI in alternating order to minimize the

bias due to the tendency of getting adjusted or tuned well to the user interface that was used first. All users

were given unlimited amount of time to complete the task.

6.2 Usability Metrics.

The measures or metrics used to assess usability are grouped into three categories: effectiveness,

efficiency and satisfaction. The effectiveness of a user interface is defined by ISO as the ability of the user

to complete the specified task and obtain accurate results. Therefore, ability to complete task, accuracy of

task completion (ability to retrieve correct clips), and quality-of-outcome which is the measure of extent to

which the interface positively engages the user by providing good feedback during the querying process

even before presenting the final result are selected as metrics for measuring effectiveness. The efficiency

of a user interface may be defined as the resources such as time, cost, user’s effort, etc. needed to achieve

the goal. For the study, learning time (time for the new user to learn to use the interface), testing time (time

to complete all 5 queries), and input rate (number of inputs provided by the user – number clicks, number

of window closings, etc.) are chosen as metrics to measure efficiency. Satisfaction measures overall

appreciation and opinion about the system. Preference (likelihood of using one interface over the other),

ease-of-use (comfort in using the interface), and overall opinion are selected as metrics to measure user

satisfaction.

6.3 Usability Study Results and Analysis.

This section presents the measurement data gathered for the assessment of effectiveness, efficiency,

and satisfaction (the three measures of usability), and their analysis.

Effectiveness: In order to measure task completion ability, each user was given the same 5 queries. If the

user completed the query, the outcome was recorded as “completed”. Otherwise, the outcome was recorded

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

18

as “not completed”. The clips retrieved by the user were checked for accuracy and recorded as “correct” if

it matched the stored result obtained by the expert. Otherwise, it was recorded as “incorrect”. The results

show that all users were able to complete the task and were able to retrieve correct clips using both

interfaces.

Efficiency: Learning and testing time was measured in seconds. After the completion of all five queries,

the user was asked to rank input rate on a scale from 1 to 5 (1 – very low, 2 – low, 3 – average, 4 – high, 5

– very high). The minimum, maximum, and the average learning time for the GI and MI were (300, 840,

and 500) and (360, 1020, and 666) seconds, respectively. On an average, users took less time to learn

gamepad interface over mouse interface. The minimum, maximum, and average testing time to complete

all five queries using GI were (152, 780, and 331) and (198, 940, and 364) seconds, respectively. The

average scores received for input rate by GI and MI were 2.2 and 4.1, respectively. Several features of the

mouse interface contributed to high input rate. First, the user had to deal with many windows that popped-

up during the query process. During the execution of complex queries which consist of several states, the

user had to move from one interface window to another to build the query incrementally. Based on the

measurement data, the users had better efficiency with the gamepad interface than the mouse interface.

Satisfaction: After completing all queries each user was asked to indicate his or her preference on a scale

from 1 to 5 (1 – I definitely prefer MI, 2 – I prefer MI over GI, 3 – I have no preference, 4 – I prefer GI

over MI, 5 – I definitely prefer GI). The metric ease-of-use was also ranked on a scale of 1 to 5 (1 – very

low, 2 – low, 3 – average, 4 – high, 5 – very high) for both user interfaces. Finally, each user was asked to

provide his or her opinion in his or her own words.

Nine users prefer GI over MI and one user had no preference. The average score for preference was

3.7/5.0 which shows that the users preferred the gamepad interface over the mouse interface. For ease-of-

use, all users ranked GI high (4) and MI average (3), respectively. Since the sum of squares within groups

is 0 and gamepad had better rating, the F-ratio becomes infinity for the ANOVA analysis. This rejects the

null hypothesis and gamepad is considered better than mouse interface for ease-of-use. This indicates that

the gamepad interface causes less user discomfort than the mouse interface. All users liked and appreciated

immediate and automatic feedback of realistic result provided by the gamepad interface. One user said that

GI provided smooth flow for building a query consisting of a sequence of states as there is no need to switch

the interface window. Several users did not like the fact that too many windows pop-up while using the

mouse interface. Therefore, GI provided higher level of satisfaction to users than MI.

6.4 Discussion.

Extendibility. GStar can easily be applied if the spatio-temporal database can be represented with S3G. S3G

requires that the spatio-temporal database can be split into states and states are linked through transitions.

The transitions may be annotated as in tennis example in this paper. Similar S3G index can be built for

sports games such as volleyball and table tennis, where players are restricted to a specific region. For other

games, the discretization step is critical. Rather than building states for all players, states may be built for

a team and ball object as in football (e.g., Team A at 49). For games like soccer, the video can be discretized

based on when the game stops or based on specific actions of players.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

19

Limitations of Mouse Interface. The current MI only provides a graphical layout of a tennis court to map

objects to locations. It could have been improved by using the actual tennis footage. However, there is

frequent camera motion in tennis videos. Therefore, the regions of locations change from one frame to

another frame. This requires the alignment of frames or detection court lines in every frame. This was not

required for the GI since there is a common region for a location in all frames. The gap between GI and MI

interface may be reduced by also allowing MI to get inputs through the actual footage.

6. Conclusion.

This paper presents Query-by-Gaming with an innovative user friendly interface for retrieving the

desired clips from tennis game video using a gaming controller. Our GStar allows the user to build spatio-

temporal queries like subsequent and eventual. Spatio-temporal queries built are applied to a graph-based

indexing structure called S3G. GStar works efficiently in retrieving the clips by mapping the user input

from gamepad to the corresponding semantic information of the video available in S3G. GStar allows the

user to continuously build the query and provides partial query results from the video immediately and

automatically. GStar also maintains a history of all queries built by the user for the current session. A

usability study was result showed majority of the users preferred the gamepad interface over mouse

interface. Our experimental setting had 10 students and 5 queries per interface. The true evaluation will

turn out from the experiences of real users of the interface.

Our usability study shows that Query-by-Gaming yields promising results for building spatio-temporal

queries. As future work, Query-by-Gaming should be experimented on other types of spatio-temporal

databases. Our index structure, S3G, is appropriate for Query-by-Gamepad since sequence of states can be

tracked instantly. The applicability of Query-by-Gaming should be studied on other spatio-temporal index

structures. The spatio-temporal queries in GStar are not typical range queries (e.g., find objects at a specific

region within an interval). Query-by-Gaming is especially useful for evaluating queries that can be

represented with linear temporal logic. The usability study in our experimental setting provided promising

results. As future work, the usability study should be conducted when such a system is deployed for real

environments. Moreover, gaming controllers provide trigger buttons that can sense how hard the button is

pressed. Such triggers can be used to build queries that may require a numeric attribute value (e.g., speed

of a ball or a car). Future work may utilize triggers for more complex queries.

Acknowledgement

This material is based upon work supported by National Science Foundation under Grant No. 0812307.

References

[1] Jain, V.; Aygun, R., "SMART: A grammar - based semantic video modeling and

representation," Southeastcon, 2008. IEEE , vol., no., pp.247,251, 3-6 April 2008.

[2] Mitesh Naik, Vani Jain, and Ramazan S. Aygun, "S3G: A Semantic Sequence State Graph for Indexing

Spatio-temporal Data - A Tennis Video Database Application”, icsc, IEEE International Conference on

Semantic Computing, 2008, pp.66-73.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

20

[3] Erwig, M. and Schneider, M., “Spatio-Temporal Predicates”. IEEE Trans. on Knowl. and Data Eng. vol.

14, no. 4 (Jul. 2002), pp. 881-901.

[4] Erwig, M, Schneider M., “Query-by-Trace. Visual Predicate Specification in Spatio-Temporal

Databases”. In Proceedings of the 5th IFIP Conf. on Visual Databases, 2000, pp.199-218.

[5] Cavalcanti, V. M., Schiel, U., and de Souza Baptista, C, “Querying spatio-temporal databases using a

visual environment”, In Proceedings of the Working Conference on Advanced Visual interfaces

(Venezia, Italy, May 23 - 26, 2006). AVI '06. ACM, New York, NY, pp.412-419.

[6] Li, X., Chang, S. K, “An Interactive Visual Query Interface on Spatial/temporal Data”, In Proceedings

of the Tenth International Conference on Distributed Multimedia Systems, 2004, pp, 257-262.

[7] T. Minka, “An image database browser that learns from user interaction,” M.I.T. Media Lab. Perceptual

Computing Section, TR 365, 1996.

[8] K. Hirata and T. Kato, “Query by visual example, content based image retrieval,” in Advances in

Database Technology—EDBT’92, A. Pirotte, C. Delobel, and G. Gottlob, Eds., Lecture Notes in

Computer Science, vol. 580.

[9] Vani Jain, Ramazan S. Aygun, “Spatio-Temporal Quering of Video Content Using SQL for Quantizable

Video Databases”, Journal of Multimedia. Vol 4, No 4 (2009), pp. 215-227, Aug 2009.

[10] Mitesh Naik, Madhav Sigdel, Ramazan Savas Aygün. Spatio-temporal querying recurrent multimedia

databases using a semantic sequence state graph. Multimedia Syst. 18(3): 263-281 (2012)

[11] Vineetha Bettaiah, Ramazan Aygun, “Querying and retrieval of eventually type spatio-temporal query

using gamepad”, Proc of MMEDIA 2011 - The Third International Conference on Advances in

Multimedia, April 2011.

[12] Giuseppe Della Penna, Daniele Magazzeni, and Sergio Orefice. 2013. A general theory of spatial

relations to support a graphical tool for visual information extraction. J. Vis. Lang. Comput. 24, 2 (April

2013), 71-87. DOI=10.1016/j.jvlc.2012.11.002

[13] Chenglang Lu; Mingyong Liu; Zongda Wu, "A visual graph-based query interface for video

databases," Software Engineering and Service Science (ICSESS), 2014 5th IEEE International

Conference on , vol., no., pp.577,580, 27-29 June 2014

[14] LuíS Certo, Teresa GalvãO, and José Borges. 2013. Time Automaton: A visual mechanism for

temporal querying. J. Vis. Lang. Comput. 24, 1 (February 2013), 24-36.

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

21

[15] Moshe Y. Vardi. 2001. Branching vs. Linear Time: Final Showdown. In Proceedings of the 7th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS 2001), Tiziana Margaria and Wang Yi (Eds.). Springer-Verlag, London, UK, UK, 1-22.

[16] Alberto Del Bimbo, Enrico Vicario, and Daniele Zingoni. 1995. Symbolic Description and Visual

Querying of Image Sequences Using Spatio-Temporal Logic. IEEE Trans. on Knowl. and Data Eng. 7,

4 (August 1995), 609-622.

[17] d'Acierno, A.; Leone, M.; Saggese, A.; Vento, M., "A system for storing and retrieving huge amount

of trajectory data, allowing spatio-temporal dynamic queries," Intelligent Transportation Systems

(ITSC), 2012 15th International IEEE Conference on , vol., no., pp.989,994, 16-19 Sept. 2012

[18] Magdy, A.; Aly, A.M.; Mokbel, M.F.; Elnikety, S.; Yuxiong He; Nath, S., "Mars: Real-time spatio-

temporal queries on microblogs," Data Engineering (ICDE), 2014 IEEE 30th International Conference

on , vol., no., pp.1238,1241, March 31 2014-April 4 2014

[19] Ferreira, N.; Poco, J.; Vo, H.T.; Freire, J.; Silva, C.T., "Visual Exploration of Big Spatio-Temporal

Urban Data: A Study of New York City Taxi Trips," Visualization and Computer Graphics, IEEE

Transactions on , vol.19, no.12, pp.2149,2158, Dec. 2013

[20] Rongjian Lan, Michael D. Lieberman, and Hanan Samet. 2012. The picture of health: map-based,

collaborative spatio-temporal disease tracking. In Proceedings of the First ACM SIGSPATIAL

International Workshop on Use of GIS in Public Health (HealthGIS '12). ACM, New York, NY, USA,

27-35.

[21] Jalal S. Alowibdi, Sohaib Ghani, and Mohamed F. Mokbel. VacationFinder: A Tool for Collecting,

Analyzing, and Visualizing Geotagged Twitter Data to Find Top Vacation Spots. ACM SIGSPATIAL

LBSN’14, November 4, 2014, Dallas, TX, USA

[22] Rongjian Lan, Marco D. Adelfio, and Hanan Samet. Spatio-Temporal Disease Tracking Using News

Articles, 3rd ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health

(HealthGIS) 2014

[23] Arianna D’Ulizia, Fernando Ferri, and Patrizia Grifoni. Moving GeoPQL: a pictorial language towards

spatio-temporal queries, Geoinformatica (2012) 16:357–389

[24] Takeuchi, S.; Akahoshi, Y.; Ong, B.T.; Sugiura, K.; Zettsu, K., "Spatio-temporal Pseudo Relevance

Feedback for Large-Scale and Heterogeneous Scientific Repositories," Big Data (BigData Congress),

2014 IEEE International Congress on , vol., no., pp.669,676, June 27 2014-July 2 2014

[25] Laura Díaz, Carlos Granell, Joaquín Huerta, Michael Gould, Web 2.0 Broker: A standards-based

service for spatio-temporal search of crowd-sourced information, Applied Geography, Volume 35,

Issues 1–2, November 2012, Pages 448-459

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

Journal of Visual Languages & Computing, Volume 29, August 2015, Pages 63–76,
doi:10.1016/j.jvlc.2015.03.003

22

[26] Pablo Bisceglia, Leticia G´omez, and Alejandro Vaisman. Temporal SOLAP: Query Language,

Implementation, and a Use Case, AMW 2012: 102-113

[27] Mesru Koprulu, Nihan Kesim Cicekli, Adnan Yazici, Spatio-temporal querying in video databases,

Information Sciences, Volume 160, Issues 1–4, 22 March 2004, Pages 131-152

[28] C. Parent, S. Spaccapietra, E. Zimányi, The MurMur project: Modeling and querying multi-

representation spatio-temporal databases, Information Systems, Volume 31, Issue 8, December 2006,

Pages 733-769

[29] Mohamed F. Mokbel, Xiaopeng Xiong, Moustafa A. Hammad, and Walid G. Aref. Continuous Query

Processing of Spatio-Temporal Data Streams in PLACE, GeoInformatica, December 2005, Volume 9,

Issue 4, pp 343-365

[30] Flickner, M.; Sawhney, H.; Niblack, W.; Ashley, J.; Qian Huang; Dom, B.; Gorkani, M.; Hafner, J.;

Lee, D.; Petkovic, D.; Steele, D.; Yanker, P., "Query by image and video content: the QBIC

system," Computer , vol.28, no.9, pp.23,32, Sep 1995

[31] Asif Ghias, Jonathan Logan, David Chamberlin, and Brian C. Smith. 1995. Query by humming:

musical information retrieval in an audio database. In Proceedings of the third ACM international

conference on Multimedia (MULTIMEDIA '95). ACM, New York, NY, USA, 231-236.

[32] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database Systems, 6/E, Addison-Wesley,

2011.

[33] J. Chen, A. G. Cohn, D. Liu, S. Wang, J. Ouyang, and Q. Yu. A survey of qualitative spatial

representations. The Knowledge Engineering Review, FirstView:1-31, 11 2014

http://www.sciencedirect.com/science/journal/1045926X
http://www.sciencedirect.com/science/journal/1045926X/29/supp/C
http://dx.doi.org/10.1016/j.jvlc.2015.03.003

