
Greedy Hierarchical Binary Classifiers for Multi-class Classification of Biological

Data

 Salma Begum, Ramazan S. Aygun

Abstract Multi-class classification is an important and

challenging problem for biological data classification.

Typical methods for dealing with multi-class classification

use a powerful single classifier such as neural networks to

classify the data into one of many classes. Alternatively, the

binary classifiers are used in one-versus-one (OVO) and

one-versus-all (OVA) classifier schemes for multi-class

classification. However, it is not clear whether OVO or

OVA yield good performance results. In this paper, we

propose a greedy method for developing a hierarchical

classifier where each node corresponds to a binary classifier.

The advantage of our greedy hierarchical classifier is that at

the nodes any type of classifier can be used. In this paper,

we analyze the performance of the proposed technique using

neural networks and naive Bayesian classifiers and compare

our results with OVO, OVA, and exhaustive methods. Our

greedy technique provided better and more robust accuracy

than others in general for biological data sets including 3 to

8 classes.

Keywords Hierarchical Binary Classifiers, Neural

Networks, Error-Correcting Output Codes, Biological Data

Salma Begum

Computer Science Department

University of Alabama in Huntsville

Huntsville, Alabama

E-mail: sb0034@uah.edu

Ramazan S. Aygun

Computer Science Department

University of Alabama in Huntsville

Huntsville, Alabama

E-mail: raygun@cs.uah.edu

1 INTRODUCTION

Binary classification is the problem of classifying a data into
two classes where one class typically represents belonging
to the target class (true or belongs to) or one of the two
classes whereas the other one corresponds to not belonging
to the target class (false or does not belong to). A binary
classifier is actually a model to separate data into two

classes. Multi-class classification is the problem of
classifying data into one of many classes. If the dataset
contains multiple classes, generating a model that separates
the data of different classes becomes difficult. Multi-class
classification is an important and challenging problem for
biological data classification [Gupta K et al. 2012]. Some of
the examples of multi-class biological datasets include
breast tissue, iris, yeast, thyroid diseases, and protein
crystallization. The multi-class classification has been
studied in (Sánchez-Maroño et al. 2010; Wang Y and
Casasent D 2006 ; El-Alfy E 2010; Casasent D and Wang Y
2005 ; Jain P et al. 2008, Nagi S and Bhattacharyya D
2013).

Multi-class classification problem can be dealt with a)
using a single multi-class classifier or b) merging the results
of binary classifiers. Different feature selection
methodologies are required to handle datasets with very
high dimensionality [Hulse J et al. 2012]. A single multi-
class classifier such as neural networks may not meet the
performance or accuracy goals of the classification problem,
since it may be difficult to come up a single model to
categorize dataset. Alternatively, the results of binary
classifiers are merged for multi-class classification problem.
The results of binary classifiers are considered as a vote for
the final classification or these binary classifiers may be
used in a hierarchical fashion to yield the class of a data
item. Although there have been many research studies that
use the results of binary classifiers for multi-class
classification problem, the research on hierarchical binary
classifiers has been limited [Sánchez-Maroño N et al. 2010].

A hierarchical binary classifier classifies the data into
two macro-classes at each node. A macro-class is a set of
classes. Depending on the output of the classifier at a node,
either the right child node or the left child node is taken for
further classification and this evaluation continues until a
node classifies the data into a single class (not into a macro-
class). One of the decisions to be made for constructing
hierarchical binary classifier is the choice of classifier to be
used at the internal nodes. Although powerful binary
classifiers such as support vector machines (Cortes C and
Vapnik V 1995) have been used for hierarchical binary
classifier, multi-class classifiers such as neural networks
have also been used as a binary classifier at the internal
nodes (El-Alfy E 2010). Casasent and Wang (Casasent D
and Wang Y 2005) propose a balanced tree using SVM that
has two equal-sized macro-classes to yield as a classifier at
the internal nodes. However, splitting into two equal-sized
macro-classes may not yield the best accuracy at each node.
Tibshirani and Hastie (Tibshirani R and Hastie T 2007)
propose SVM-based hierarchical margin trees for high-
dimensional classification and test it on cancer microarray
data. They propose splitting by using the largest margin at
each time, but this yields the separation of the most different

Network Modeling Analysis in Health Informatics and Bioinformatics, December 2014, 3:53. The final publication is available at
http://link.springer.com/article/10.1007/s13721-014-0053-2.

mailto:sb0034@uah.edu
http://link.springer.com/search?facet-author=%22Sajid+Nagi%22
http://link.springer.com/search?facet-author=%22Dhruba+Kr.+Bhattacharyya%22
http://www.bibsonomy.org/author/El-Alfy

class each time. Therefore, their greedy technique mostly
separates one class from the rest at each node and this is not
useful for biological subgrouping. To alleviate this problem,
they propose complete linkage approach but it requires the
computation of distances of items in different partitions. In
addition, their approach is not generalizable to other
classifiers. Hierarchical binary classifiers are also applied on
other types of data such as hand written numerals using
hierarchical GMDH-based neural networks (El-Alfy E
2010). The authors also consider the choice of features to be
used at each node.

In this paper, we propose a greedy hierarchical binary
classifier construction approach for multi-class classification
problem which is an extension of our previous work
(Begum and Aygun, 2012). In this work, we propose a fast
technique to construct a greedy hierarchical binary classifier
that allows using any type of classifier at the internal nodes.
Two types of greedy techniques are proposed: a) top-down
and b) bottom-up. The top down construction starts with a
macro-class that contains all classifiers and tries to split into
two sub-macro-classes. The bottom-up construction starts
with best one-versus-one classifier and merges other classes
that would yield high accuracy. The performance in terms of
accuracy and the complexity of building a greedy-based
hierarchical classifier is also explained. The performance of
the proposed greedy hierarchical binary classifier is
compared with two commonly used methods that utilize
binary classifiers: one-versus-one and one-versus-all. In
addition, to determine where the actual performance stands,
all possible binary classifiers are generated exhaustively,
and error-correcting output codes (ECOC) are used in
labeling the class of a data item. Exhaustive method is
usually avoided due to its significant cost for training a large
number of classifiers (Sánchez-Maroño et al. 2010). When
creating all binary classifiers in exhaustive method, we
make statistical analysis of different binary classifiers which
can be helpful in research work. Various techniques have
been used to combine the results of many binary classifiers
including the majority vote (Friedman J1996), error
correcting output code (ECOC) model (Escalera S et al.
2010), the bradley–terry model (Hastie T and Tibshirani R
1998), and the directed acyclic graph model (Platt JC,
Cristianini N and Shawe-Taylor J 2000). In this paper, we
pick ECOC for merging results for the exhaustive, OVO,
and OVA classification results.

This paper is organized as follows. The following
section provides the background for ECOC and the basics of
building a hierarchical binary classifier. Section 3 explains
our greedy hierarchical binary classifiers including both top-
down and bottom-up versions. Experiments and the
evaluation of our method are discussed in Section 4. The
last section concludes our paper.

2 BACKGROUND

Multiclass classification problem is to map the data samples
into more than two classes. There are two main approaches
for solving multiclass classification problems. The first
approach deals directly with the multiclass problem and uses
algorithms like Decision Trees (Breiman L et al. 1984;

Quinlan J 1993), Neural Networks (Bishop CM 1995), k-
Nearest Neighbor (Bay SD 1998) and naive Bayesian
classifiers (Rish I 2001). The main problem with this
approach is to determine features that will distinguish classes
when the number of classes increases (Guyon I et al. 2006)
As a result, this approach is likely to yield lower accuracy.

The second approach solves the multiclass problem by
converting it into a set of binary classification problems
using binary classifiers such as Support Vector Machines.
Several methods have been proposed to decompose the
multi-class problem into binary problems. The one-versus-all
(OVA) and one-versus-one (OVO) are the two popular
methods of decomposition. In OVA, K class problem is
solved by K binary classifiers, where each classifier
discriminates a given class from the other K−1 classes (Duda
R et al. 2000). In OVO, a binary classifier is built to
distinguish a class from each other class. This requires
building binary classifiers (Hastie T and
Tibshirani R 1998). Dense (Allwein et al. 2002) and sparse
random (Escalera et al. 2009) schemes are also introduced
as a solution to decompose into binary classifiers. In dense
scheme, the suggested number of classifiers to be learned is
10logK. In sparse method, 15logK classifiers are created.
Another scheme known as exhaustive method generates all
possible binary classifiers for a given multiclass problem
(Sánchez-Maroño N et al. V 2010). A common criticism of
these methods is that, they decompose the multiclass
problem a priori, without considering the properties and
characteristics of the data sets (Allwein et al. 2002).

Solving multiclass problem using binary classifiers also
has several drawbacks. The main problem is to integrate the
results of binary classifiers to classify data. Error-Correcting
Output Codes (ECOC) is a general framework to integrate
the results of binary classifiers to address the multiclass
problem (Escalera S et al. 2010). It consists of two steps:
encoding and decoding.

1. Encoding step

In the encoding stage, a codeword is assigned for each of the
classes. If there are n possible binary classifiers for a K- class
problem, then a codeword of length n is obtained for each
class where each position of the code corresponds to a
response of a given binary classifier. Arranging the
codewords as rows of a matrix, we define a ternary coding
matrix M, where M is a matrix and

. In this matrix M, +1 and -1 are defined

by the class membership of the left and right part (class) of
binary classifiers. For example, +1 for 1-2 classifier indicates
that data belongs to class 1, and -1 indicates that data belongs
to class 2. The value 0 is used to indicate that the class is not
considered as a member of the binary classifier (Escalera S et
al. 2008). Fig. 1 shows an example of encoded coding matrix
M for 3-class problem.

2. Decoding step

In the decoding step, applying the n trained binary
classifiers, a code is obtained for each data point in the test
set. This code is compared to the base codewords of each
class defined in the matrix M, and the data point is assigned

to the class with the ”closest” codeword. The most
frequently applied decoding designs are: hamming
decoding, inverse hamming decoding, and euclidean
decoding (Escalera S et al. 2010).

(a) OVO (b) OVA

(c) Exhaustive

Fig. 1 Encoded Coding Matrix for ECOC

The output space can also be divided in a hierarchical

fashion where the classes are arranged into a tree where the

path from the root node to a leaf node leads to a

classification of a new pattern.

In Hierarchical Binary Classifiers (HBCs), each node of

a tree is a binary classifier that uses K−1 binary classifiers to

classify a K-class problem (Wang Y and Casasent D 2006).

Fig. 2 is an example of HBC for a 5-class problem where

each node in the tree is a Binary Classifier (BC). For testing

a new pattern, a path is followed from the root to a leaf

node, indicating the class label of an unknown sample. In

the best case, it is possible to classify a sample at the top

node and in the worst case, K−1 binary classifiers may be

required depending on the tree structure of HBC. Thus, the

tree structure affects the number of classifiers to be used for

testing a data sample. Various hierarchical tree structures

are possible for a K-class problem. In one-versus-all

version, the trees are organized in a linked list fashion,

whereas balanced hierarchical tree structure may reduce the

number of classifiers to be used.

The tree structure may influence the classification accuracy

of a test sample. Therefore, the hierarchical splitting (i.e.,

the macro-class selection) at each node in the hierarchy

should not be done arbitrarily or by intuition. In literature,

different clustering algorithms have been used for binary

partition. A generalization of c-means clustering along with

the ideas from simulated annealing can be used to obtain the

binary partition of classes in the hierarchy (Kumar S et al.

2002). In (Vural V and Dy JG 2004), Vural and Dy

suggested K-mean clustering method to define the binary

partitions of the classes. Lorena and Carvalho proposed two

general minimum spanning tree based algorithms to

automatically produce the hierarchical tree structure using

information collected from the multiclass data sets (Lorena

A and Carvalho A 2008). In this way, hierarchical trees are

organized in two different designs: bottom-up and top-

down (Duda R et al. 2000). In this paper, these two

approaches are used where macro-class selection is based on

greedy technique of trained binary classifiers.

3 PROPOSED APPROACH

Our approach solves the multiclass classification problem
by a hierarchical binary classifier. In this method, our major
concern is to generate the best hierarchical tree in terms of
accuracy. Since the number of all possible trees becomes
high, we also propose two greedy techniques (top-down and
bottom-up) to separate the classes at each node in the
hierarchical tree structure. This greedy tree construction can
be done using any classifier. In this work, we build the
hierarchical greedy trees using neural and naïve Bayesian
classifier. Our proposed method has the following major
steps explained below.

Classifiers

Class

Name 1-2 1-3 2-3

1 +1 +1 0

2 -1 0 +1

3 0 -1 -1

Classifiers

Class

Name 1-23 2-13 3-12

1 +1 -1 -1

2 -1 +1 -1

3 -1 -1 +1

 Classifiers

Class

Name 1-2 1-3 2-3 1-23 2-13 3-12

1 +1 +1 0 +1 -1 -1

2 -1 0 +1 -1 +1 -1

3 0 -1 -1 -1 -1 +1

Fig. 2 Hierarchical Binary Classifier for 5 class

problem

1. Train binary classifiers

First, the dataset is divided into two sets: training and
testing. For training, we created all possible binary
classifiers for multiclass problem. This approach includes
the schemes OVA and OVO. The number of possible
combinations for K-class problem can be obtained using the
following formula:

where

if

 (1)

For example, using (1), the number of possible binary

classifiers for 5-class problem is given in Table 1. The

expression f(K) iterates for all possible macro-class splits.

Pi,j,K returns all possible number of classifiers when K

macro-classes are split into i classes on one side and j

classes on the other side. In Table 1, each row indicates a

possible macro-class split and shows the number of

classifiers for that split.

Table 1 : Possible binary classifiers for 5-class problem

Table 2 depicts the number of possible classifiers for class
3-8 problems.

Table 2: Possible binary classifiers of different multiclass problems

(Begum S and Aygun R 2012)

No. of

Classes
No. of Binary Classifiers

3 6

4 25

5 90

6 301

7 966

8 3025

2. Generate all possible trees

To understand and analyze the nature of binary hierarchical
trees we generated all possible trees using the following
recursive equation,

where

if
 f(1)=1 ,

 f(2)=1 , (2)
 and K is the number of classes.

This is a recursive function and the number of possible trees
becomes high with the increase in class number. According
to (2), the number of possible hierarchical trees for 4-class
problem is 15 (Begum S and Aygun R 2012). Table 3 shows
the possible hierarchical binary trees for different number of
classes.

Table 3: Possible hierarchical binary trees of different multiclass

problems (Begum S and Aygun R 2012)

No. of Classes No. of Trees

3 3

4 15

5 105

6 945

7 10395

8 135135

These trees are evaluated and the best tree is obtained by
measuring the accuracy of binary classifiers used at each
node in the hierarchical design. For example, to get the best
tree for a 3-class problem, we need to evaluate all 3
hierarchical trees (Fig. 3). The comparative result of greedy
approach with the best tree is also included in the
experiments section.

Binary

Classifier

Name

Equation Classifier

Number

One-versus-
one (IBI) 2

)1,4(C)1,5(C

10

One-versus-

two (IBII)

)2,4(C)1,5(C 30

One-versus-

three (IBIII)

)3,4(C)1,5(C 20

One-versus-

four (IBIV)

)4,4(C)1,5(C 5

Two-versus-

two (IIBII) 2

)2,3(C)2,5(C

15

Two-versus-

three (IIBIII)

)3,3(C)2,5(C 10

Total 90

K,j,i

)j,iK(C)i,K(CP

2

)j,iK(C)i,K(C
 P j,i

Kj,i,

2

K

1i

iK

ij

K,j,i
Pf(K)

2
K

1i

Ki,P=f(K)

i)-f(K f(i))i,K(CP Ki,

2

i)-f(K f(i))i,K(C
 Ki,P ,i)-(Ki

(a)Tree 1 (b) Tree 2

3. Develop a greedy hierarchical classifier

Since training all the binary classifiers and building the
hierarchical tree is computationally infeasible, we propose a
fast algorithm to build the tree automatically while training.
In this technique, the classes are separated into macro-
classes at each node based on the accuracy of the neural
binary classifier in the training phase. In our greedy
hierarchical model, the tree has K-1 binary classifiers and K
leaf nodes for K-class problem. Two different greedy tree
construction algorithms are proposed here: top-down and
bottom-up. Fig. 4 shows the pseudo-code of top-down and
bottom-up hierarchical binary tree generation algorithm.
The provided pseudo-code is an updated version of our
implementation to increase clarity.

3.1 Top-down greedy tree construction

For top-down approach, for a K-class problem at the top
node it selects the best binary classifier i b j that splits into

two macro classes i and j where and S includes

all classes. (Fig. 4 (a) Line 4 to 8). This step is followed
recursively for all the macro-classes from top to bottom and
a hierarchical binary tree is built with K leaf nodes where
each leaf node corresponds to a given class (Fig. 4(a) Line 9
to 10). The iterative procedure of hierarchical tree
generation for 4-class problem in top-down method is
shown in Fig. 5
In Fig. 5, at the top node the best binary classifier 2b134 ({2}
in one macro-class, {1, 3, 4} in other macro-class) is

selected from all classifiers in IBIII, and IIB II. Here IBIII

represents the classifiers that split classes into two groups
where the first group has one class and the other group has
three classes. Since the left node has only one class, it then
finds the best binary classifiers among the right macro
classes. This recursive procedure stops when both the left
and right node ends in one class.

3.2 Bottom-up greedy tree construction

For bottom-up approach a similar strategy is used starting
from the bottom node. For a K-class problem at the bottom
node it selects the best binary classifier i b j that splits into

two macro classes i and j where and ,

i.e., the macro classes include only one class. In other
words, it chooses the best one-versus-one classifier (Fig.
4(b) Line 4 to 9). By merging these two (macro) classes
into one macro class, in the next step, this procedure again
chooses or merges two macro classes whose binary
classifier would perform better than the others(Fig. 4(b)
Line 10 to 17). This recursive merging procedure stops
when it finds a binary classifiers i b j that splits into two

macro classes i and j where and S that includes

all classes. This can also be stated as finding a binary
classifier i b j that merges macro classes i and j into a single
macro class. The iterative procedure of hierarchical tree
generation for 4-class problem in bottom-up method is
shown in Fig. 6.

In Fig. 6, for bottom-up greedy tree structure at the bottom
node the best binary classifier 1b3 ({1} in one macro-class,
{3} in other macro-class) is selected among all IBI, (one-
versus-one) classifiers. It then merges the classifier and
considering this as one macro class recursively finds the
best one among all one–versus-one. This procedure stops
when it finds the best classifiers with two macro classes and
the union of macro classes includes all classes.

3.3 Comparison of top-down and bottom-up methods

Top-down approach tries to find the best binary split for a
set of all classes at the root node. If there are K classes, all
the binary splits where one side has 1, 2,…, K/2 classes

need to be considered. This leads to classifiers

for the root node if K is odd. This leads to exponential
number of classifier generations. On the other hand, since
the decisions are initially made at the root node, selecting a
good classifier for the root node is important Bottom-up
approaches start building the tree from the leaf nodes.
Initially, all binary one-versus-one classifiers need to be

trained. This leads to binary classifiers. In

the worst case, the tree will look like a chain. In the worst

case, classifiers will be trained. The total cost of

training in the worst case is close to the summation of cost
for OVO and OVA. The complexity for the bottom-up is at

23

1 2 3

1

3 2

 (c) Tree 3

13

1 2 3

2

3 1

12

1 2 3

3

2 1

Fig. 3 All hierarchical binary trees for 3-class
problem

a) Greedy-Top-Down Algorithm:

Greedy-Top-Down (S, K,node)

//IN: S=The set of all classes

//IN: K=The number of classes

//OUT: node contains the corresponding node in the tree

//BC=a binary classifier

//bsLeft=best left child of macroclasses

//bsRight=best right child of macroclasses

//maxacc=the best accuracy of classifiers so far

1. begin

2. maxacc=0

3. if K>1 then

4. for i=1 to K/2 do

5. Q=(all i combinations of K classes)

6. for each element in Q do

 a. Left=Q.current

 b. Right=S-Left

 c. BC=train(tset(Left),tset(Right))

 d. if BC.accuracy>maxacc then

 e. maxacc=BC.accuracy

 f. (bsLeft, bsRight) =(Left,Right)

 g. Node.classifier=BC

 h. endif

7. endfor

8. endfor

9. Greedy-Top-Down(bsLeft,||bsLeft||,node.left)

10. Greedy-Top-Down(bsRight,||bsRight||,node.right)

11. endif

12. end

The function is called with the following parameters:

Greedy-Top-Down(S,K,root).

// train : This function is called with two parameters; left and right

macro classes. It returns a binary classifier after training.

//tset: This functions returns the training set for a macro class

(b) Greedy –Bottom-Up Algorithm:

Greedy-Bottom-Up (S, K,node)

//IN: S=The set of all macroclasses

//IN: K=The number of classes

//OUT: node contains the corresponding node in the tree

//BC=a binary classifier

//MCi=ith macroclass in set S

/MCi.node: the tree node for macroclass MCi

//MCi.node.classifier: the classifier for macroclass MCi

//bsLeft=best left child of macroclasses

//bsRight=best right child of macroclasses

//maxacc=the best accuracy of classifiers so far

1. begin

2. maxacc=0

3. if K>1 then

4. for i=1 to K-1 do // create all OVO classifiers

5. for j=i+1 to K do

6. BC=train(tset(MCi),tset(MCj))

7. if BC.accuracy>maxacc then

 a. maxacc=BC.accuracy

 b. (bsLeft, bsRight) =(MCi,MCj)

 c. bsClassifier=BC

 d. endif

8. endfor

9. endfor

10. S=S-{bsLeft}// remove children

11. S=S-{bsRight}

12. MCnew=(bsLeft U bsRight) // new MC as union

13. MCnew.node.classifier=bsClassifier

14. MCnew.node.left=bsLeft.node

15. MCnew.node.right=bsRight.node

16. S=S U{MCnew}

17. Greedy-Bottom-Up(S,K-1, MCnew.node)

18. endif

19. end

The function is called with the following parameters:

Greedy-Bottom-Down (S,K,root)

// train : This function is called with two parameters; left and

right macro classes. It returns a binary classifier after training

 //tset: This functions returns the training set for a macro class

Fig. 4 Algorithm for greedy top-down and bottom-up tree structure

One-Vs-Three:

Two-Vs-Two:

(1)-(2,3,4) 90%

(2)-(1,3,4) 95%

(3)-(1,2,4) 92%

(4)-(1,2,3) 89%

(1,2)-(3,4) 90%

(1,4)-(2,3) 94%

(1,3)-(2,4) 78%

Size of Left= ‖(2)‖ =1

Size of Right= ‖(1,3,4)‖ >1

One-Vs-Two:

(1)-(3,4) 96%

(3)-(1,4) 95%

(4)-(1,3) 88%

Size of Left, ‖(1)‖ =1

Size of Right, ‖(3,4)‖ >1

One-Vs-One:

 (3)-(4) 91%

Fig. 5: Top-down greedy hierarchical tree construction for 4-class problem

One-Vs-One:

(1)-(2) 90%

(1)-(3) 95%

(1)-(4) 92%

(2)-(3) 89%

(2)-(4) 93%

(3)-(4) 91%

Remaining class ,

 S'={2,4}

One-Vs-One():

(2)-(4) 93%

(1,3)-(2) 77%

(1,3)-(4) 88%

Remaining class ,

 S'={}

One-Vs-One():

(1,3)-(2,4) 78%

Fig. 6: Bottom-up greedy hierarchical tree construction for 4-class problem

= (1)-(3, 4)

= (3)-(4)

= (2)-(1, 3, 4)

2b134

2
1b34

1
3b4

3 4

= (2, 4)

2b4

13b24

1b3

1 2 3 4

= (1, 3)-(2, 4)

= (1)-(3)

2b134

2

1, 3, 4

2b134

2

2b134

2
1b34

1

3, 4

1b3

1 2, 4 3

2b4

1b3

4 2 3 1

 𝑺′ ≠ 𝟎 𝑺′ = 𝟎

an acceptable level. However, since the tree is built from the
leaf node to the root node, when the method reaches to the
top nodes, the accuracy for those binary classifiers might be
low. The decisions at the top nodes are critical and
misclassification at the top nodes cannot be fixed later even
though there could be very good binary classifiers close to
the leaf nodes.

3.4 Improved greedy bottom-up(IGBU) HBC testing

The bottom-up method is fast; however, if the binary
classifier at the root node has a low accuracy, the
performance of the hierarchical binary classifier is also low.
This is a significant limitation. We overcome this problem
by skipping the classifier at the root node when the accuracy
of the classifier at the root is low (e.g., below 80%).
Whenever a new data sample is provided, the sample is fed
into both left and right classifiers of the root note. As a
result, the tree will produce two class labels: one for the left
sub-tree and the other one for the right sub-tree. For these
two class labels, we apply one-versus-one classifier to
determine which class the sample belongs to. For example,
in Fig. 7, since the accuracy of the root binary classifier 13b24
(13 in the left macro class and 24 in the right macro class) is
less than 80%, rather than providing data at root node we
provide a data sample to both sub trees. If the output of a test
sample from the left binary tree 1b3 is 1 and from the right
binary tree 2b4 is 4, we again test the sample with the one-
versus-one classifier 1b4 to get the desired label of test
sample.
Since the accuracy of classifiers close to the leaf nodes is
high, the overall accuracy is improved. We avoid the
problem of misclassifying at the root node. Actually we are
replacing the classifier at the root node with a one-versus-
one classifier. This does not add any complexity to training
since one-versus-one classifiers were already generated
while building the bottom-up greedy tree.

4. HBC testing

After the construction of HBC, we test each sample to
get the class label of sample. In general, for Hierarchical
Binary Classifiers, we start testing the samples with the
binary classifier at the root node of the tree. Each node
actually corresponds to a binary classifier. Depending on the
output of the binary classifier, the right branch or left branch
is taken. Then we test the sample with the next classifier
along the left or right path of the tree structure. This process
is continuously followed until a leaf node of the tree where
desired class of the sample is obtained.

(1,3)- (2,4) 78%

Fig. 7 Improve Greedy Bottom-Up (IGBU) HBC
testing

Test Sample

=1

1b4

4 1

2b4

13b24

1b3

1
2 3 4

Test Sample

2b4

1b3

4 2 3

3

1

=1 =4

5. Generate encoding codeword for ECOC framework

 After decomposing into binary classification problem, we
trained all the binary classifiers with the training datasets
and store the corresponding accuracy. Since the number of
samples in each class is not equally distributed, we also
measure the number of misclassified images to evaluate the
performance of each classifier. To combine the results of
binary classifiers, a coding matrix M for these strategies
(OVA, OVO, greedy, and exhaustive) is generated during
the training stage (Fig. 1). In this matrix M, each row
represents a code for a class which will be compared in the
decoding stage.

6. Apply hamming decoding strategy

Finally, to determine the final class label for each of OVA,
OVO, greedy and exhaustive approach, hamming decoding
technique is used. In this method, a coding matrix M' is
obtained by testing the samples in the test set with all
possible trained binary classifiers. In the matrix M', ith row
represents a codeword for samples i in the test set and
column j is the result class value of test samples. For
example, if there are 200 samples in test dataset and 6
possible binary classifiers for a 3-class problem [Table 2],
then 200x6 M' is generated in exhaustive approach. In the
matrix M' , for example, 198th row represents the codeword
for 198th data sample. This codeword is compared with each
base codeword generated in the encoding step by finding the
hamming distance (Escalera S et al. P 2010). The minimum
distance codeword is considered to be the result class of the
sample dataset. The equation for hamming distance is as
follows:

 (3)

 Here x is a test codeword from M' and is a base
codeword from M corresponding to class Ci.

4 EXPERIMENTAL RESULTS AND ANALYSIS

To solve the multiclass classification problem with different
strategies and make a comparative study, we used various
datasets (Asuncion A and Newman DJ 2007). 5 different
sets of data of different classes were experimented using
MATLAB (Demuth H and Baele M 1994). The number of
samples and features of different biological data for both
training and testing is shown in Table 4. Among the
datasets, only Protein Crystallization and Iris are equally
distributed, i.e., each class has the same number of samples.

We provide brief analysis and comparison in the following
subsections.

4.1 Complexity of training and testing

In this section we compare the training and testing

complexity of greedy methods with other methods for

multiclass problem. Table 5 shows the number of classifiers

required for different strategies.

Table 4: Experimented biological dataset (Begum S and Aygun R 2012)

No Data set Classes Images Features

1 Iris 3 150 4

2 Thyroid 3 2978 22

3
Protein

Crystallization
5 100 45

4 Breast Tissue 6 106 9

5 Ecoli 8 336 7

Table 5: Number of classifiers in testing for different strategies to

solve multiclass classification problem

Name (3 class) (5 class) (6 Class) (8 class)

Greedy
(Worst case)

2 4 5 7

Greedy

(Best case)

1 1 1 1

MLP 1 1 1 1

OVO 3 10 15 28

OVA 3 5 6 8

EX 6 90 301 3025

𝑯𝑫 𝒙,𝒚𝒊 = 𝟏− 𝐬𝐢𝐠𝐧 𝒙𝒋𝐲 𝒊
𝒋

𝟐

𝒏

𝒋=𝟏

From Table 5 it is clear that, in exhaustive method (EX), the

number of classifiers for testing phase increases

dramatically with the increases in number of classes. Notice

that, greedy strategy requires less number of classifiers than

OVA, OVO and exhaustive approach. In the best case,

greedy strategy (top-down and bottom-up) requires only one

classifier to classify an unknown sample. The number of

classifiers to be used for testing is significantly low with

respect to OVO method. Though multi-layer perceptron

(MLP) requires only one classifier solving multiclass

problem, this strategy has quite lower performance than the

greedy techniques discussed in section 4.3 (especially for

breast and protein crystallization problems).

The MLP is used as the base classifier in this set of

experiments. The complexity of MLP depends on the

structure of the neural network, the number of samples, and

the number of epochs. The number of epochs is the number

of times that the samples are fed into the neural network.

One of the advantages of high epochs is to remove the

dependency of the weights of the neural network on the

order of the samples. Our MLPs have two layers: hidden

and output layers. The number of neurons in the output layer

is equal to the number of classes. The number of neurons in

the hidden layer is user defined. Every feature is linked to

all neurons in the hidden layer; and every neuron in the

hidden layer is linked to all neurons in the output layer. The

weights of those links and the bias value for each neuron

need to be updated for each sample. Figure 8 shows a

sample MLP for 3 input features and 3 output classes. The

hidden layer has 4 neurons, and the output layer has 3

neurons. Such a neural network has 3*4 (from features to

the hidden layer) + 4*3 (from hidden layer to output layer)

weights to be computed. In addition, 4+3 (the total number

of neurons) bias values for each neuron needs to be

computed. For this example, the total number of weights (or

values) that need to be computed is 3*4+4*3+(4+3)=31.

 Fig 8. A sample MLP

This computation is performed per sample and repeated for

the complete training set by a number of epochs. We have

used 10 neurons for the hidden layer in our experiments.

Assuming that the training set has N samples, e epochs, f

features per sample, K classes, 10 neurons in the hidden

layer, and K neurons in the output layer, the complexity of

building MLP is

K)w(f,*N*e=K)f,N,Cost(e, (4)

where

10)+11K+(10f=K)+10+K*10+10*(f=K)w(f,

and w(f,K) represents the number of weights to be

computed.

The number of epochs is not provided as a parameter for the

training. We rather stop when there is no improvement on

the performance of the accuracy. So, the number of epochs

is a variable number depending on how quickly the neural

networks learn the model. For the MLP classifier, the

number of epochs for one set of experiments for 3, 5, 6, and

8 classes was 45, 30, 47, and 59, respectively. After defining

the cost of a general MLP, we may compute the cost of

other strategies.

For comparison purposes, assume that the total number of

training samples is N. Therefore, the cost of training a single

MLP is Cost(e,N,f,K). OVA method generates K number of

classifiers and uses all the training set per classifier. The

cost of OVA can be represented as

K

1)=(i

iOVA
f,2)N,,Cost(e=K)f,(N, Cost (5)

where ei represents the number of epochs for the ith

classifier. If we assume the same number of epochs per

classifier, we reach

K

1)=(i

iOVA
f,2)N,,Cost(e=K)f,(N, Cost (6)

w(f,2)*N*e*K=
OVA

32)+(10f*N*e*K=
OVA

OVO method generates K(K-1)/2 classifiers. Since OVO

focuses on two classes, the training set only includes the

samples for relevant classes. If each class has equal number

of classifiers, the training set for OVO classifiers has

(N/K)*2 samples. The cost of OVO can be represented as

-1)/2)(K(K

1)=(i

iOVO
f,2)2,(N/K)*,Cost(e=K)f,(N, Cost (7)

Again if we assume the same number of epochs per

classifier,

f
1

f
2

f
3

C
1

C
2

C
3

-1)/2)(K(K

1)=(i

iOVO
f,2)2,(N/K)*,Cost(e=K)f,(N, Cost

w(f,2)*2*(N/K)*e*1))/2-(K(K=
OVO

32)+(10f*N*e1)*-(K=
OVO

 (8)

Our greedy techniques generate a variety of classifiers at

different complexities. Let’s start analyzing greedy top-

down classifier. We should note that it is a recursive

method. For the root node, 2K-1-1 classifiers are generated if

K is odd, and 2K-1-1+C(K,K/2)/2 classifiers are generated if

K is even. So, the number of classifiers for the root node,

rK, is defined as

 odd is K if 1-(2

otherwise K/2)/2C(K,+1-2

K

 1)-(K

1)-(K

=r (9)

The cost of greedy top-down algorithm can be computed as

 B)-Kf,M,*M)N/K-((K Cost+

B)f,M,*(N/KCost+f,2)N,Cost(e,*r=K)f,(N,Cost

GT

GTKGT

 (10)

where K/2B1 and represents the best possible

binary split for K classes. For example, if B=2, one branch

has 2 classes and the other branch has K-2 classes after split.

For 3 classes, its cost is computed as

f ,2)(2N/3,Cost+

f,3)(N, Cost*r=f,3)(N, Cost

OVO

OVA3GT

32)+(10f*N)*e(2/3)*+e*(9=

32)+(10f(2N/3)**e1)*-(2+

32)+(10f*N*e*3*3=

OVOOVA

OVO

OVA

 (11)

Let’s analyze the greedy bottom algorithm for 3-class

problem as follows:

f,2)Cost(N,+f,2)(2N/3,Cost*3=f,3)(N,Cost
OVOGB

32)0f1(*N*)e+e*(2=

32)0f1(*N*e+

32)0f1(*(2N/3)*e*1)-(2*3=

OVAOVO

OVA

OVO

(12)

The cost expression for the greedy bottom-up is not as

straightforward as the greedy top-down. We should note that

when we build one-versus-one classifier, it is possible to

have classes that have varying samples. We represent it with

CostOV2 as follows:

f,2)),N+(NCost(e,=f)},N,({N Cost
 2121OV2

 (13)

where N1 and N2 correspond to the number of samples of the

participating classes. We may compute the generic one-

versus-one classifier using CostOV2 as follows:

K

1)+i=(j

jiOV2

-1)(K

1)=(i

*

OVO
 f)}, N,({N Cost=K)f,(N Cost

 (14)

where N* indicates that classes may have different number

of samples.

We may represent the cost of Greedy bottom-up strategy as

follows:

1)-Kf,(N,Cost+K)f,,(N Cost=K)f,(N, Cost
GB

*

OVOGB

 (15)

Table 6 represents the number of binary classifiers for
different approaches. Though the number of binary
classifiers in training depends on the selection of best binary
classifiers at each node of hierarchy, from our experimental
result we can see that the number of classifiers for bottom-up
greedy technique is lower than top-down.

For example, for 8 class problem greedy bottom-up
requires 49 binary classifiers in training to build the tree
whereas it is 180 for greedy top-down [Table 6]. The number
of classifiers for greedy top-down and bottom-up
hierarchical trees depend on the architecture of selected best
binary classifier in training. From Tables 5 and 6, we can see
that , the number of classifiers in training and testing is same
for MLP, OVO, OVA and also for EX approaches whereas
its different for greedy approaches. This factor (number of
classifiers) mainly determines the time to classify a sample.
(Table 7 lists the training time of different strategies for
different multiclass problems. We can see that MLP requires
least training time among all strategies since it uses only one
classifier during training. It is also noticeable that, training
time for the exhaustive approach is significantly high for
high number of classes. There are four factors that affect the
complexity of the base classifier (MLP, in this case): the
number of epochs, the number of training samples, the
number of features, and the number of classes. Because of
these varying factors, the running time may not increase
consistently as the number of classes’ increases.

The size of training set also has impact on training time.

This is one of the the reasons why training time is almost the
same for OVA and OVO method for 8-class problem. For
8-class problem, differences in the number of classifiers are
20, but OVA method uses the whole training dataset for each
8 classifiers. On the other hand, training set for OVO varies
based on the distribution of sample in each class. Mostly,
OVO uses the smallest training dataset. Greedy top-down
method initially uses the whole dataset as this method uses
one-vs-all binary classifiers at the root node. Training time
falls down when this method goes downward and uses one-
vs-one binary classifiers. For Greedy top-down, the number
of classifiers at the root node is high since possible
combination among all classes is high. In case of greedy
bottom-up, training set is small at the bottom node as this
method starts from bottom and all the classifiers are one-vs-
one. Considering the size of training data set and required
number of binary classifiers for training, our proposed
greedy bottom-up approach is faster than greedy top-down

for 3 to 8 class problems [Table 7]. Note that the number of
epochs, the number of samples, the number of features, the
number of classes, and the number of classifiers to be built
influence the running time and running time may not always
consistently increase..

4.2 Analysis of accuracy of binary classifiers

This section provides accuracy analysis for different neural
binary classifiers for 5-class problem. For neural binary
classifier, 80% of the data are used for training and 20% for
validation/testing. First, for each dataset all possible binary
classifiers based on neural networks are trained using (1). In
order to compare statistical analysis of neural binary
classifiers with different macro classes, we use a histogram
plot of each multiclass problem. For example, Fig. 9 shows
the histogram plot of different classifiers for 5-class problem
(Protein Crystallization). It represents that, binary classifier
one-versus-two has the highest number of binary classifiers
and most of its classifiers have 90% to 100% accuracy. It is
also noticeable from Table 8 that the performance of IBIII
(one-versus-three) binary classifier is the best binary
classification (considering min, max and mode) for this
dataset.

As different macro classes of binary classifiers may have
different number of samples for each class, we also consider
misclassified samples (MS) to measure the performance
which is shown in Table 9. From these results it can be
concluded that, only IBI (one-versus-one) and IBII (one-
versus-two) binary classifiers are on the top positions of the
rank. On the other hand, most of the IBIII (one-versus-
three) binary classifiers are in the bottom ten.

Table 6: Number of classifiers in training for different strategies to

solve multiclass classification problem

Name (3 class) (5 class) (6 Class) (8 class)

Greedy –Top-
Down

4 ~ 27 ~44 ~180

Greedy

Bottom-up

4 ~16 ~25

~49

MLP 1 1 1 1

OVO 3 10 15 28

OVA 3 5 6 8

EX 6 90 301 3025

Table 7: Training time (in minute) for different strategies to solve

multiclass classification problem

Name Iris Protein

Crystallization

Breast

Tissue

Ecoli

(3 Class) (5 class) (6 Class) (8 class)

Greedy top-
down

~.4 ~3 ~5 ~8

Greedy

bottom-up

~.4 ~2.5 ~4 ~6

MLP ~.3 ~.5 ~.5 ~.5

OVO ~1 ~2.22 ~4 ~5

OVA ~.3 ~1 ~2.3 ~3

EX ~2 ~20 ~120 ~1080

4.3 HBCs with different classifiers

4.3.1 Using neural networks as binary classifiers

We have initially used neural networks for the internal nodes
of the HBC. Table 10 shows the performance comparison of
greedy strategy with OVO, OVA, exhaustive and multi-layer
perceptron (MLP) network for different datasets of different
classes.

To integrate the results of OVO, OVA and exhaustive
approach, ECOC with hamming decoding method has been
used. We also generate all possible binary hierarchical trees
for Thyroid, Iris and Protein Crystallization using (2) and
make comparison of the best and the worst tree with other
strategies. Note that, for 3-classes the performance accuracy
is almost the same for all strategies. From the third row in
Table 10, we see that the best hierarchical binary tree
outperforms greedy, MLP, OVO for 5-class problem. We
provide the performance of the best HBC to check how good
greedy algorithms are good at building HBCs. It can be also
seen from Fig. 10 that, performance accuracy of greedy
strategy is high for most multiclass problems comparing to
MLP, OVO and OVA and this strategy is significant for 8-
class problem (93% accuracy). When the number of classes
becomes higher we can expect larger differences between
greedy and other strategies (MLP, OVO and OVA).

Based on the performance of trained classifiers, both top-
down and bottom-up greedy hierarchical trees are created for
all datasets. As it is not possible to show all greedy
hierarchical trees, we only compare top-down and bottom-up
greedy structure for Protein Crystallization dataset [Table
11].

 In this table, b is the binary classifier and MS is the
misclassified samples at that level of the tree. Note that, both
the hierarchical top-down and bottom-up trees start with one-
versus-all and go downward in this way. It can be also seen
that, the number of misclassified samples are less in top-
down structure than bottom-up for this dataset.

Table 9: Performance results of binary classifiers for protein

crystallization dataset

Top 10 Bottom 10

Binary

Classif

ier

Name

Accurac

y

No. of

Misclass

ified

Samples

Binary

Classifier

Name

Accura

cy

No. of

Misclassi

fied

Samples

1 b 2 100 0 3 b 1 2 4 5 80 20

1 b 5 100 0 4 b 1 3 5 80 16

2b 5 100 0 4 b 3 5 76.66 14

2 b 1 3 100 0 1 b 2 3 5 82.5 14

2 b 3 4 100 0 4b 2 5 81.66 11

1 b 3 97.5 1 4 b 2 3 5 86.25 11

1 b 4 97.5 1 3 b 5 75 10

2b 4 97.5 1 4 b 2 3 85 9

1 b 2 3 98.33 1 1 b 2 3 4 88.75 9

2 b 3 5 98.33 1 3 b 1 2 4 88.75 9

Binary

Classifier

Name

Min Max Mode

IBI (One-
Versus -One) 75 100 97.5

IBII(One-
Versus -Two) 76.6 100 95

IBIII(One-
Versus-Three) 80 100 97.5

IBIV(One-

Versus-Four) 80 98 95

IIBII(Two-
Versus-Three) 88.75 97.5 93.75

IIBIII(Two-

Versus-Three) 90 95 95

Table 8: Performance comparison of binary classifiers in accuracy

for protein crystallization dataset

Fig. 9. Histogram plot of binary classifier of protein crystallization dataset

Table 10: Comparison of test results for different strategies to solve multiclass classification problem

No. of

Classes

Best

Hierarchical

Binary Tree

Worst

Hierarchical

Binary Tree

Greedy

 Bottom-

Up

Greedy

Top-

Down

MLP OVO OVA
Exhaustive

Approach

3(Thyroid) 100 97.84 100 100 99.7 97 99.8 99.8

3 (Iris) 98.7 98.7 98.7 98.7 97.3 100 98.7 100

5(Protein

Crystallizatio
n)

92 68 89 90 82 79 82 99

6(Breast
Tissue) × × 89.6 89.6 78.301 68.9 92.5 100

8(Ecoli) × × 91.17 93.79 91.667 79.5 89.3 96.42

Fig. 10. Comparative results of GBU (Greedy Bottom-Up),

GTD (Greedy Top-Down), MLP (Multi-Layer Perceptron),

OVO (One-Versus-One), OVA (One-Versus-All) and EX

(Exhaustive) approach

4.3.2 Using naïve Bayesian classifier as binary classifiers

In this work, we also build the greedy hierarchical tree using
naïve Bayesian classifier for 5 to 8 class problem which is
shown in Table 12. Though the bottom-up technique is fast
enough, greedy top-down outperforms bottom-up
considering accuracy. From Table 12 we can see that, the
performance of greedy for Ex (exhaustive) using naïve
Bayesian classifier is not high for all cases. Among OVO
and OVA, OVO gets better accuracy and it’s significant for

8–class problem. Since for greedy bottom-up hierarchical
tree using naïve Bayesian classifier, the performance of root
node is less than 75% for 5 to 8 class problem, we use the
improved greedy bottom-up to improve the performance.
The improved greedy bottom-up (IGBU) provides around
10% better accuracy than OVA using the naive Bayesian
classifier. The results for IGBU are almost the same as the
OVO. If we compare the results of the hierarchical classifier
against OVO and OVA, our proposed technique provides
more stable results than OVO and OVA. When using neural
classifiers, OVO method generated very low accuracy results
for 5- class, 6-class, and 8-class problems [Table 9]. On the
other hand, when naive Bayesian classifiers are used, the
accuracy of OVA was very low. However, our hierarchical
classifier provided better results in general than OVO and
OVA if MLP neural networks are used. While OVA method
performs low using naïve Bayesian classifier, our improved
hierarchical classifier performs as good as OVO.

5 CONCLUSION

The multi-class classification techniques such as one-
versus-one and one-versus-all have been used in the
literature assuming that they will outperform a single multi-
class classifier. In this paper, we propose a greedy technique
for building hierarchical binary classifiers for the multi-class
classification problem. We compare our greedy techniques
with OVO and OVA techniques.
We have tested and compared our method using 5 different
biological datasets. In our analysis, we realize that greedy
bottom-up produces less number of classifiers to be tested
than the top-down greedy version. Although the number of
classifiers is for bottom-up greedy classifier is close to the
summation of the number of classifiers in OVO and OVA.
In terms of accuracy, greedy top-down usually
outperformed the greedy bottom-up version, and in general
these greedy classifiers outperformed OVO and OVA. If the
hierarchical binary classifier is based on the MLP at the
internal nodes both greedy techniques outperformed the
OVO and OVA. When naïve Bayesian classifier at the
internal nodes, the top-down version performs better than
OVA but performs similarly as OVO. Our improved
bottom-up greedy technique also performs similarly as the

Table 11: Top- down and bottom-up tree structures for protein

crystallization dataset (Begum S and Aygun R 2012)

Name Greedy (Top-Down) Greedy (Bottom-Up)

Tree Structure

2 b 1345 (MS-2)

 5 b 134 (MS-3)

 3 b 14 (MS-4)

 1 b 4 (MS-1)

4 b 1235 (MS-6)

 3 b 125 (MS-5)

 5 b 12 (MS-0)

 1 b 2 (MS-0)

Misclassified

Samples

10 11

Table 12: Comparison of test results for different strategies using

naïve Bayesian classifier to solve multiclass classification problem

No. of

Classes

Greedy
Bottom-

Up

Improved

Greedy

Bottom-

Up

Greedy
Top-
Down

OVO OVA EX

5(Protein
Crystalli
zation)

73 88 89 87 69 86

6(Breast
Tissue)

65.01 75 76 78.3 67.92 80.3

8(Ecoli) 81.84 89 89.5 90.17 83.61 87.5

top-down method. The exhaustive method should provide
the optimal method. With the MLP classifier, the exhaustive
method can produce high accuracies. However, with the
naïve Bayesian classifier, the exhaustive method did not
generate the best results.
In this paper, without adding significant cost with respect to
OVO, we have shown that our greedy hierarchical
classifiers can outperform widely used OVO and OVA
techniques. Due to the design and use of the greedy logic,
we minimize the number of classifiers to be built at the
training stage. Since the number of classifiers for testing is
at most equivalent to the number of classifiers in OVA, our
greedy hierarchical binary classifiers can be used in many
applications. As future work, our proposed method can be
tested with other types of classifiers such as support vector
machine at the internal nodes.

ACKNOWLEDGMENT

We would like to acknowledge Marc Pusey, Ph.D., of
iXpressGenes, Inc. for providing the Protein Crystallization
dataset and Madhav Sigdel for extracting features from this
dataset.

References

Allwein, Schapire R and Singer Y(2002) Reducing Multiclass
To Binary: A Unifying Approach For Margin Classifiers.
Journal of Machine Learning Research, 1:113–141, doi:
10.1162/15324430152733133

Asuncion A and Newman DJ(2007) Uci Machine Learning
Repository.University of California, Irvine, School of
Information and Computer Sciences,
http://mlearn.ics.uci.edu/MLRepository.html. Accessed: May
2012

Bay SD (1998) Combining Nearest Neighbor Classifiers
Through Multiple Feature Subsets. In Proceedings of the 17th
International Conference on Machine Learning, pp 37–45,
Madison, WI

Begum S and Aygun R(2012) Analyzing the Performance of
Hierarchical Binary Classifiers for Multi-class Classification
Problem Using Biological Data. ICMLA 2, page 145-150.
IEEE, doi: 10.1109/ICMLA.2012.165

Bishop CM(1995) Neural Networks for Pattern Recognition.
Oxford University Press

Breiman L, Friedman J, Olshen R and Stone C(1984)
Classification and Regression Trees. Chapman and Hall

Casasent D and Wang Y(2005) A Hierarchical Classifier
Using New Support Vector Machine For Automatic Target
Recognition. In IJCNN , IEEE, Volume 18, Issue 5-6, pp
541-548 , doi:10.1016/j.neunet.2005.06.033

Cortes C and Vapnik V(1995) Support-Vector Networks.
Machine Learning, pp 273–297, doi:10.1007/bf00994018

Demuth H and Baele M (1994) Neural Network Toolbox.
User's Guide. The MathWorks, Inc., Natick, MA

Duda R, Hart P and Stork D (2000) Pattern Classification.
New York:Wiley- Interscience

El-Alfy E (2010) A Hierarchical GMDH-Based Polynomial
Neural Network for Handwritten Numeral Recognition Using
Topological Features. In IJCNN , IEEE, p. 1-7

Escalera S, Pujol O and Radeva P(2008) On the Decoding
Process in Ternary Error-Correcting Output Codes. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
Vol. 32, No. 1. pp. 120-134, doi:10.1109/TPAMI.2008.266

Escalera S, Pujol O, and Radeva P(2009) Separability Of
Ternary Codes For Sparse Designs Of Error Correcting Output
Codes. Pattern Recognition Letters, 30:285–297,
doi:10.1016/j.patrec.2008.10.002

Escalera S, Pujol O and Radeva P(2010) Error-Correcting
Ouput Codes Library. In: J. Mach. Learn. Res., Vol. 11
Cambridge, MA, USA: MIT Press, p. 661—664

Friedman J(1996) Another Approach To Polychotomous
Classification. Technical Report, Department of Statistics,
Stanford University

Gupta K, Agarwal K, Prakash N, Singh B, Misra K (2012)
Prediction of miRNA in HIV-1 genome and its targets
through artificial neural network: a bioinformatics approach.
Network Modeling Analysis in Health Informatics and
Bioinformatics, Volume 1, Issue 4, pp 141-151, doi:
10.1007/s13721-012-0017-3

Hastie T and Tibshirani R(1998) Classification By Pairwise
Coupling. Advances in neural information processing systems,
vol. 10, MIT Press, pp. 507—513

Hulse J; Khoshgoftaar M,Napolitano,A and Wald, R (2012)
Threshold-based feature selection techniques for high-
dimensional bioinformatics data. Network Modeling Analysis
in Health Informatics and Bioinformatics, Volume 1, Issue 1-
2, pp 47-61, 10.1007/s13721-012-0006-6

Guyon I, Gunn S, Nikravesh M and Zadeh L (2006) An
Enhanced Selective Naive Bayes Method with Optimal
Discretization. Feature Extraction: Foundations And
Applications, Chap. 25, pp. 499-507, Springer

Jain P, Wadhwa P, Aygun R, and Podila G(2008) Vector–G:
Multi-Modular SVM-Based Heterotrimeric G-Protein
Prediction. In Silico Biol. Vol. 8, Number 2, pp. 141-155

Kumar S, Gosh J and Crawford M (2002) Hierarchical Fusion
Of Multiple Classifiers For Hyperspectral Data Analysis.
Pattern Analysis and Applications 5 ,210–220,
doi:10.1007/s100440200019

Lorena A and Carvalho A(2008) Tree Decomposition Of
Multiclass Problems. Proceedings of the Brazilian
Symposium on Neural Networks (SBRN), pp. 189–194,
doi:10.1109/SBRN.2008.43

http://www.bibsonomy.org/bibtexkey/conf/ijcnn/2010
http://www.bibsonomy.org/author/El-Alfy
http://www.bibsonomy.org/bibtexkey/conf/ijcnn/2010

Nagi S, Bhattacharyya D (2013) Classification of microarray
cancer data using ensemble approach, Network Modeling
Analysis in Health Informatics and Bioinformatics, doi:
10.1007/s13721-013-0034-x

Quinlan J(1993) C4.5: Programs for Mahine Learning. Morgan
Kaufmann

Platt JC, Cristianini N and Shawe-Taylor J(2000) Large
Margin Dags For Multiclass Classification. Advances in
Neural Information Processing Systems, MIT Press, pp. 547–
553

Rish I(2001) An Empirical Study Of The Naive Bayes
Classifier. In IJCAI Workshop on Empirical Methods in
Artificial Intelligence

Sánchez-Maroño N, Alonso-Betanzos A, Garcia-Gonzalez P
and Bolón-Canedo V (2010) Multiclass Classifiers Vs
Multiple Binary Classifiers Using Filters For Feature
Selection. IJCNN, IEEE , p. 1-8

Tibshirani R and Hastie T(2007) Margin Trees For High-
Dimensional Classification. Journal of Machine Learning
Research, volume 8 , pp. 637–652

Vural V and Dy JG(2004) A Hierarchical Method For Multi-
Class Support Vector Machines. Proceedings of the 21st
International Conference on Machine Learning, pp. 105,
doi:10.1145/1015330.1015427

Wang Y and Casasent D(2006) Hierarchical K-Means
Clustering Using New Support Vector Machines For Multi-
Class Classification. In Proceedings of the international joint
conf. on neural networks pp. 3457–3464

