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Abstract. Management of large collection of replicated and versions of data in cen-
tralized or distributed environments is important for many systems that provide data
mining, mirroring, storage, and content distribution. In its simplest form, the doc-
uments are generated, duplicated and updated by emails and web pages. Although
redundancy may increase the reliability at a level, uncontrolled redundancy aggravates
the retrieval performance and might be useless if the returned documents are obsolete.
Document similarity matching algorithms do not provide the information on the dif-
ferences of documents, and file synchronization algorithms are usually inefficient and
ignore the structural and syntactic organization of documents. In this paper, we pro-
pose the S2S matching approach. The S2S matching is composed of structural and
syntactic phases to compare documents. Firstly, in the structural phase, documents
are decomposed into components by its syntax and compared at the coarse level. The
structural mapping processes the decomposed documents based on its syntax without
actually mapping at the word level. The structural mapping can be applied in a hierar-
chical way based on the structural organization of a document. Secondly, the syntactic
matching algorithm uses a heuristic look-ahead algorithm for matching consecutive to-
kens with a verification patch. Our two-phase S2S matching approach provides faster
results than currently available string matching algorithms.
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1. Introduction

With the progress of technology and the cost reduction of storage, update, and
transmission of data, the information is available in lots and various ways to the
public. People can subscribe to web pages, newsgroups, and email groups at their
will with the anticipation of attractive information. If someone uses ”google” to
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search data on the web, it is likely to get almost identical documents for a set
of keywords. Information retrieval systems are eager to return all the duplicates
and versions of documents whether they are obsolete or not. Nowadays, the
number of available documents to the information retrieval (IR) systems has been
enormous. It is left to the user to identify and filter the necessary information.

1.1. Motivation

The amount of digitally available information has increased with the support of
database systems, information retrieval systems, web servers, and email servers.
The information can be copied, updated, and transmitted to different resources.
Although the systems can synchronize with each other (i.e., the files at different
systems are synchronized), the meaningful difference between documents are
important for users to make critical decisions. We are particularly interested in
the following applications:

a) Email and Newsgroups. The users may receive duplicates of messages when
there are network errors and the sender sends the same message more than
once unintentionally. If the sender forgets some important information in the
earlier message, the message is submitted with minor differences. The updates
may be a couple of words like apartment number and/or a zip code in an ad-
dress, and date for a deadline. For example, you want to retrieve the messages
for Mobile Database conferences. The system returns all the call for papers
for the conferences with updated deadlines. The sender of the message some-
times identifies the difference with the previous message in the latest message.
Sometimes, it is not clear whether the message is new or an updated version of
the older message. We expect the system to disclose what has been new in the
latest message. The user should not go over two messages and compare them
to identify the updates if the differences are not stated explicitly. When the
newer message contains all the information of the previous message, the older
message becomes obsolete and that message can be deleted from the database.

b) Replication in P2P Systems. The peers in P2P systems (Milojicic et al,
2002) can search data at different peers, and then store, update, and share
with other peers. As new peers are added, data are replicated and updated;
and the queries will yield the output of similar documents. Since most peers
connect to the network using slow bandwidths, a good summary of differences
between two documents will help the user access the desired document.

c) Data Mining and Information Retrieval. The performance of data mining
and information retrieval systems is directly influenced with the amount of
data to be processed. If the duplicate, similar, and obsolete data are identified,
the retrieval process will be faster and data mining will result more accurate
results.

d) Subscription systems. The browsers such as Internet Explorer allow users
to subscribe web pages for periodical storage and update of locally stored web
pages. Updating the data efficiently is useful, but it would also be useful to
provide the syntactic differences between the older and newer versions rather
than comparing them manually.

e) Web crawling. There has been tremendous effort to synchronize large sets
of web pages and this has yielded to web re-crawling research (Brewington et
al, 2000; Cho et al, 2000). If the source to be synchronized is not known or if
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there are multiple resources, it is important to know the site (or document)
to synchronize with. A syntactic difference of documents would be a good
indicator.

The common theme in these applications is the presentation of differences
among similar data before proceeding to update, copy, or delete data. Our goal
is to provide an efficient preliminary method to present the differences among
similar documents.

1.2. Related Work

The string processing research area is a well-studied and analyzed research (Aho
et al, 1976; Amir et al, 2004; Apostolico, 1996; Hirscberg et al, 1977; Nakatsu
et al, 1982; Navarro, 2001; Chen et al, 2006). The problem that we investigate
is close to finding the longest common subsequences between two strings S and
T. The longest common subsequence is a state of the art similarity measure for
sequences, and is widely used in sequence related tasks (Wang et al, 2006). The
traditional string processing algorithms do not assume anything on the similarity
of strings. In other words, these algorithms have to consider worst cases where
the input strings are dissimilar.

The dynamic time warping is a dynamic programming approach to determine
the similarity between two time series (Sankoff, 1983). The typical distance be-
tween two time series is determined by the following formula:

Di,j = min(Di−1,j, Di−1,j−1, Di,j−1) + d(si, pi);

where function d is a distance function that depends on the application for time
series S and P ; and D is a distance matrix to be used for dynamic programming.
In this paper, our method for structural mapping is also a kind of dynamic time
warping algorithm. However, the initial conditions and the distance functions
are generated to serve our purposes.

The document similarity methods usually return the similarity of two docu-
ments. However, they do not return any information on what is similar and what
is not. String distances are usually expensive to compute in large databases where
each document may contain thousands of words. The most efficient document
retrieval methods use Latent Semantic Indexing based on frequency matrices
(Deerwester et al, 1990; Dumais, 1991). These methods provide fast document
similarity measures. In (Broder, 1997), two measures on the resemblance and
containment of documents are proposed that corresponds to ”roughly the same”
and ”roughly contained”. Since traditional string distance measures (Hamming,
Levenstein, etc.) are usually expensive to compute, they use these new measures
based on shingles (the length of consecutive tokens). However, their algorithm
does not state the actual differences between documents.

The granularity of alphabets affects the performance of the algorithms. Al-
though text documents are composed of characters, characters are not adequate
to evaluate to obtain meaningful differences between two strings. The diff ap-
plication that compares two documents using an efficient longest common sub-
sequence algorithm is an example state-of-art technique for text differencing
(Schubert et al, 2005). The granularity of diff command in UNIX is a line. Each
line is treated as a token (alphabet). Even a word is shifted in each line to the
next line, the documents will be totally treated as different documents. The diff
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command aims to reduce the number of changes to convert one document to
another. There are also other comparison algorithms like bdiff and vcdiff (Hunt
et al, 1998; Korn et al, 2002). The algorithms are usually studied under delta
compression techniques (Hunt et al, 1998; Korn et al, 2002; Miller et al, 1985).
The delta coding is used to convert one file to another based on differences and
distances between two files.

The rsync algorithm (Trigdell, 2000; Trigdell et al, 1996) is commonly used
to synchronize files. It serves to synchronize files that may exist in any format
by dividing first into blocks and then generating hash keys. The hash keys are
matched in the new file to synchronize two files. The update information is
reported in terms of blocks which may not carry semantic information for mean-
ingful documents. The rsync algorithm focuses on the reduction of the number of
bits transferred and it does not have any good performance bounds with respect
to edit distance (Savant et al, 2003). Even if there is a single mismatch within a
block, that is considered as a different block.

1.3. Our Approach

In this paper, we propose the S2S matching that is composed of structural and
syntactic evaluations to compare the similar documents. Our goal is not to give
the longest common subsequence that returns the minimum editing distance.
Our goal is also not to convert a document to another efficiently. Our goal is to
return the meaningful differences between similar documents that can be used
in information filtering.

In our algorithm, we do not treat every appearance of a member of the alpha-
bet in the same way. We assume that the strings have structure and closeness of
appearances (or existence of an appearance in the same component) may affect
the matching process. Since string matching is a costly process, we firstly de-
termine the similar documents by using document similarity measures and then
apply our S2S matching algorithm. Our syntactic evaluation algorithm uses a
look-ahead heuristics for 2 consecutive matches. The document is virtually di-
vided into components (sentences in text documents) and the appearance of an
alphabet (e.g. words) in different components (e.g. sentences) can be considered
as different. Fig. 1 depicts the steps of our approach. We have performed our
experiments on text documents.

Our contributions can be listed as follows:

– S2S: Two-phase matching process is composed of structural mapping and syn-
tactic evaluations.

– Structural mapping algorithm is optimized and has O(n) complexity.

– Syntactic matching avoids the incorrect matching of documents in different
components and also has O(n) complexity for similar documents.

Since our algorithm is a heuristic algorithm, there might be cases where the
output is not semantically correct. In those cases a worst-case algorithm should
process the original data or another efficient algorithm including this one can
reevaluate the generated output. But this is not discussed in this paper. We
make sure that the complexity of the algorithm is O(n) by considering simi-
lar documents, so it will not deteriorate the overall complexity. This paper is
organized as follows. The following section explains the background on string
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Fig. 1. Steps of structural and syntactic document matching

matching. Our S2S approach is summarized in Section 3. Structural evaluation
is discussed in Section 4. Syntactic evaluation is explained in Section 5. Section 6
discusses our experiments and gives analysis of our algorithm. Section 7 discusses
limitations and future work. The last section concludes our paper.

2. Background on String Matching and File

Synchronization

Let S = s0s1...sn−1 and T = t0t1...tm−1 be two strings defined over alphabet
Σ. The length of S is denoted with |S| = n; si denotes the ith alphabet of S;
and sa..b = sasa+1...sb where 0 ≤ a < b ≤ n. We consider three edit operations:
deletion, insertion, and substitution. In this paper, when comparing S and T , if
a substring of S does not appear in T , it is treated as deletion. If a substring of
T does not appear in S, it is treated as insertion. Fig. 2 shows a sample sequence
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S : a f b c x y z

a x y z b cT :
������

������

������

Fig. 2. Sequence matching.

matching. The longest common subsequence (LCS) is axyz for this example. If
we want to convert S to T , remove fbc from S and substitute (second) a with bc.
To convert T to S, we would insert fbc between a and x and substitute bc with a.
In terms of the number of operations, only two operations are needed to convert
S to T and T to S. The edit distance between S and T is 5 (e.g, insert fbc;
substitute a with c; and insert c). The dist(S,T) gives the edit distance between
S and T.

The granularity of alphabet is important in assessment of similarities and
differences between two strings. If the semantics is not important and if the con-
sideration is to minimize the number of operations to convert a text to another,
then the alphabet may consist of lines in text documents as in diff program.
This will lead to a fast comparison but incorrect interpretation of differences
between strings. For example, consider the documents in Fig. 3. The diff algo-
rithm returns the following delta encoding: {{1c1, 3}, {3c5}, {5c7, 15}. That is,
substitute line 1 of S with lines of 1 to 3 of T ; substitute line 3 of S with line 5
of T ; and substitute line 5 of S with lines 7 through 15. The actual semantically
correct answer should be to insert first five lines of T into the beginning of S. If
the granularity of the alphabet is a character, the program may even consider an
extra space or a tab as a mismatch although the rest of the text is the same. This
is also an issue with the rysnc (Trigdell, 2000; Trigdell et al, 1996) algorithm.

In our approach, we consider the granularity of an alphabet as a word. From
now on, an alphabet corresponds to a word. Throughout paper, we also use the
word token to represent the members of Σ.

3. S2S

The S2S matching approach compares documents in two phases: structural and
syntactic. The structural mapping considers the structural organization of docu-
ments and does not look into semantics. On the other hand, syntactic evaluation
considers matching of the alphabet. In our system, the syntactic matching follows
structural mapping. The structural mapping identifies the set of components of
the documents where syntactic matching needs to be performed. Since these
components are likely to have some similarity, the syntactic matching can be
performed very fast.

The structural mapping does not filter out any syntactic meaning. It is just
a preprocessing step to map components for syntactic matching. It just reduces
the burden on the syntactic matching. For example, assume that there are two
versions of a paper: p1 and p2. We would like to see how p2 is updated from p1. In
a traditional approach, the complete document is treated as a single string and
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1 ==================================================================

2 Apologies if you receive multiple copies of this message.

3 ==================================================================

4 Due to several requests, the submission deadline has been extended

5 NEW DEADLINE: June 10th, 2004

6 ==================================================================

7 Call for Papers for a Special Issue in

8 International Journal of Comp. Systems Science and Eng. IJCSSE

9 Special Issue on Mobile Systems ...

(a)

1 Call for Papers for a Special Issue in

2 International Journal of Comp. Systems Science and Eng. IJCSSE

3 Special Issue on Mobile Systems ...

(b)

Fig. 3. (a) new document, T (b) old document, S

then compared. However, it is not necessary to compare a word in the abstract
with a word in the conclusion of the paper. Our structural mapping indicates that
abstract of p1 should be compared against the abstract of p1 and the conclusion
of p1 should be compared against the conclusion of p2. However, if the documents
are similar to each other and moreover, if all the words that are searched exist
at a relatively close distance from the beginning of the search point, hierarchical
decomposition may not affect (or improve) the performance. For example, if two
documents are exactly the same, structural mapping will not improve the per-
formance. However, such cases cannot be determined in advance, and structural
mapping improves the performance especially when new words, sentences, and
sections are introduced in a new document. If the syntactic mapping correspond
to matching words, word level matching is performed for the corresponding sen-
tences only. Therefore, a word is not searched beyond the end of corresponding
sentences.

3.1. Structural Mapping

Since the text documents are not structured as XML or web documents, the doc-
ument similarity methods such as (Hammouda et al, 2004; Li et al, 2005) cannot
be applied to plain text documents. However, documents can still be divided
into smaller components. For a regular document at the high level, a document
is composed of sections and sections are composed of subsections. The subsec-
tions are composed of paragraphs and paragraphs are composed of sentences.
Sentences are composed of words and words are composed of characters. The
lowest level for structural mapping is the level of sentences. The actual similar-
ity of sentences can be accomplished by comparing the words in two sentences.

The identification of the lowest level is determined by syntactic matching.
For example, if the syntactic equivalence of two paragraphs can be identified by
just comparing the sentences (but without looking into words in the sentences),
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Fig. 4. Structural mappings of documents S and T

the lowest level for structural mapping is a paragraph. The number of levels of
decomposition of a document depends on the type of a document. The structural
mapping can also be performed at multiple levels in a hierarchical way.

It should be noted that the identification of structural organization of a doc-
ument is domain dependent. The domain of a document might be a book, report,
journal (or conference) paper, survey, and test. Some documents may use dif-
ferent fonts to identify section headings while some others might use numbering
for section titles. However, sentence and word level operations are not domain
dependent. Starting from the sentence level is applicable to all domains.

The matching always starts from the structuring mapping and then syntactic
mapping follows structural mapping. The structural mapping might have differ-
ent levels such as sections, paragraphs, and sentences. The structural mapping
also starts from the highest level possible. If section and sentence are two levels
available for structural mapping, the structural mapping starts from section level
mapping followed by the sentence level.

In our case, the documents are decomposed into components (in our case,
sentences) by using delimiters such as ”.”, ”?”, and ”;” symbols. For each string
S, we keep an array for delimiter characters. The structural mapping requires
the mapping of components at the structural level without considering any se-
mantics. If the mapping levels are sentences, the sentences of two documents are
mapped. Fig. 4 depicts the structural mapping of two documents.

The mapping is not always 1 − 1 mapping. Sometimes, there is no corre-
spondence and this corresponds to insertion or deletion of a component. In some
cases, component may be divided into components or a set of components is
united as a single component. At the structural mapping level, it is not possi-
ble to judge on insertions or deletions. The structural mapping always assigns
a corresponding component and it is the responsibility of syntactic matching to
determine insertions and deletions.

3.2. Syntactic Matching

We realize two issues when we process syntactic matching. Firstly, some sets of
characters like white space, tab, and extra lines do not affect the semantics of
the document. Secondly, an occurrence of a word in another sentence cannot
always be considered as a correct match. Especially consider articles a and the.
An occurrence of the in another sentence is probably a different occurrence.

If a word, w, is appearing more than k sentences later where k is a threshold,
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S : He is a good student He is a nice person

He is a good student and a nice personT :
�

�
�

�
�

�

�
�

�

Fig. 5. Splitting of sentences.

that appearance can be treated as an incorrect match. Normally, it is reasonable
to consider only matches within a sentence. However, the cases where a sentence
is divided into multiple sentences or multiple sentences are united into a single
sentence might occur and these cases might be missed. In the example shown in
Fig. 5, the word nice in t is matching with the word nice in the second sentence
of s. Although this match appears in different sentences, this is a correct match.
We provide reliable algorithms in Section 4 and 5.

4. Structural Mapping

Assume the matching of two documents V and W where |V | = n and |W | = m.
If n and m are huge numbers, the matching with algorithms having O(mn)
complexity is costly. We will use the fact that all documents are structured. A
document can be considered as a hierarchical organization of syntactic informa-
tion. At the high level there are sections, subsections, and so on. We know not
all documents are properly hierarchically organized. But we definitely know that
all documents are composed of sentences. Structural mapping algorithm returns
all the mappings to be evaluated by syntactic matching. Since the problem is
divided into smaller problems after mapping, parallel processing algorithms can
benefit the mappings of structural mapping.

Let V = v0v1...vg−1 and W = w0w1...wh where vi and wi denote the ith com-
ponents of V and W , respectively (Note: when structural mapping is considered,
all indices refer to components rather than alphabets). Let |vi| denote the length
(the number of words in vi). If |vi| = |wj |, we can state that the number of
insertions and deletions is equal. The length of a component plays an important
role whether they are similar or not. Depending on the length of components an
approximate cost function can be determined as follows:

C0,0 = 0
C0,j = |vj | + C0,j−1 for 1 ≤ j ≤ n;
Ci,0 = |wi| + C0,i−1 for 1 ≤ i ≤ m;
Ci,j = min(Ci−1,j , Ci−1,j−1, Ci,j−1) + ||wi| − |vj ||;

where C is a cost matrix and Ci,j is obtained by adding the minimum in-
sertion/deletion distance for the ith and jth component. The minimum inser-
tion/deletion distance is minInsDelDist(vi, wj) = ||vi| − |wj ||. This algorithm
forces matching components. In other words, when two components are com-
pared, the distance is the difference in the number of words. This formula re-
sembles dynamic time warping formulas. However, this type of application of
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51 27 15 10 14 18 9 26 16 19 1 19

0 51 78 93 103 117 135 144 170 186 205 206 225
51 51 0 27 42 52 66 84 93 119 135 154 155 174
27 78 27 0 15 25 39 57 66 92 108 127 128 147
15 93 42 15 0 10 24 42 51 77 93 112 113 132
10 103 52 25 10 0 14 32 41 67 83 102 103 122
14 117 66 39 24 14 0 18 27 53 69 88 89 108
18 135 84 57 42 32 18 0 9 35 51 70 71 90
9 144 93 66 51 41 27 9 0 26 42 61 62 81
15 159 108 81 66 56 42 24 15 11 27 46 47 66
11 170 119 92 77 67 53 35 26 22 16 35 36 55
16 186 135 108 93 83 69 51 42 36 22 19 20 39
19 205 144 127 112 92 74 52 52 49 25 22 23 20
1 206 145 128 113 93 75 53 53 50 26 23 22 21
19 225 264 147 132 102 94 72 63 60 45 26 27 22

Table 1. The dynamic programming sample for computation of the cost matrix.

dynamic warping is new for string matching, since in string comparison, words
are matched; not the length of the components.

If we consider the insertion or deletion of sentences in distance function, then
it should be modified as follows:

Ci,j = min(Ci−1,j , Ci−1,j−1, Ci,j−1) + min(|wi|, |vj |, |wi − vj |);

Please note that initial formulation does not ignore insertions and deletions.
Deletions and insertions are detected at the syntactic matching level. In the
second formulation, it says that the distance between two sentences whose lengths
are 5 and 40 is min(5,40,35)=5 that corresponds to deletion/insertion of the
smaller sentence.

However, the previous formulation does not indicate the relationship between
the previous cost value and the new additional cost. If the diagonal value is the
minimum value, then the substitution is preferred. If the upper or left value is the
minimum value, there is insertion/deletion. The previous equation is updated as
follows:

Ci,j = min(Ci−1,j + |wi|, Ci−1,j−1 + |wi − vj |, Ci,j−1 + |vj |);

In our experiments, we have used the third equation.
Table 1 shows a portion of a sample cost matrix. The first row shows the

length of sentences in W and the first column shows the length of sentences of
V . After the cost matrix is generated, the matrix needs to be traced back to
identify the components to be mapped. We use two one-dimensional arrays for
each string. The bold values in Table 1 show the minimum values. Whenever a
value is computed for a matrix location, we also maintain the previous location
(i.e. diagonal, left, or upper) in the matrix that leads to this new value.

The TraceMatch algorithm given in Algorithm 4.1 starts from the bottom-
right corner and traces for the minimum value in the direction of top-left corner.
Since the size of the cost matrix is (g+1, h+1), the indices of mapping sentences
is 1 less than the indices of the cost matrix. The Z values keep the mapping
components of two documents. In other words, the component Z1(i) of W is
mapped to Z2(i) in V . Note that Z(i) ≥ Z(i − 1). Table 2 shows the mapping
for the cost matrix given in Table 1. Depending on this table, {v0, w0}, {v1, w1},
{v2, w2}, {v3, w3}, {v4, w4}, {v5, w5}, {v6, w6}, {v9, w9}, {v10, w10}, {v11, w11},
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Z1: 0 1 2 3 4 5 6 7 7 8 9 10 11

Z2: 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 2. Mapping components.

51 27 15 10 14 18 9 26 16 19 1 19

0 51 78 93 103 117 135 144 170 186 205 206 225
51 51 0

27 78 0

15 93 0

10 103 0

14 117 0

18 135 0

9 144 0 26 42
15 159 15 11 27
11 170 26 22 16
16 186 42 36 22

19 205 22

1 206 22

19 225 22

Table 3. Optimized algorithm to compute cost matrix.

and {v12, w12} can be considered as 1 − 1 mapping. The v7 is mapped to mul-
tiple components in W . This is a possible indication of addition of sentences or
splitting of a component. In this case, we map {v6 − v8, w6 −w9}. The sentences
at the boundaries must also be included in this mapping.

Algorithm 4.1. The implementation of TraceMatch algorithm.

Procedure TraceMatch(C, V, W )
IN: C is the cost matrix.
IN: V = v0v1...vg−1 and W = w0w1...wh−1.
OUT: Mapping arrays Z1 and Z2.
begin

count = 0;
i = g;
j = h;
Z1[count] = i − 1;
Z2[count] = j − 1;
increment count;
while (i > 1 and j > 1) do

begin
find min neighbor of Ci,j

update (i, j) to the min neighbor index
Z1[count] = i − 1;
Z2[count] = j − 1;
increment count;

endwhile
if remaining unmapped sentences then

map these sentences to the 1st sentence of the other document
endif
reverse Z1 and Z2

end
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4.1. Optimization of Structural Mapping

The complexity of determining the mappings is O(gh). If the time complexity
is O(n) for regular syntactic matching, the time complexity of S2S matching
would be O(gh + αn) where α is the number of mappings (for Table 2, α = 12).
Although this is faster than matching word by word, the gh factor may lead to
O(g2) factor if g ≈ h. If this is the dominating factor, it will have a quadratic
complexity. In Table 1, bottom-left and upper-right corners have the maximum
values. Those corners state that there are no sentences that could be mapped.
We do not need to compute every value of the cost matrix. Especially, if the
number of subcomponents (e.g. sentences or words) matches exactly, there is
no need to match these components against other components. The components
may also match from the end of the document. The components that match from
the end of the document is marked and our algorithm is forced to match those
components matching exactly at the end.

Definition 4.1. P (C, r, c) is called partial cost matrix of C where 0 ≤ i ≤ r
and 0 ≤ j ≤ c and P (C, r, c)i,j = Ci,j .

Assume that P (C, r, c) is the best match for r and c sentences of V and W . We
want to estimate P (C, r + 1, c + 1). There are three options: a) match sentences
vr+1 and wc+1 b) insert sentence of V c) delete sentence of V . The heuristics is
as follows: if matching is correct, the minimum value will be at Cr+1,c+1; and
Cr+1,c+1 < Cr+1,c and Cr+1,c+1 < Cr,c+1. Otherwise there is no match for these
sentences and one of these sentences should be ignored. We estimate the other
cell and compute the matrix as follows:

C0,0 = 0
C0,j = |vj | + C0,j−1 for 1 ≤ j ≤ n;
Ci,0 = |wi| + C0,i−1 for 1 ≤ i ≤ m;
Ci,j = min(Ci−1,j + |wi|, Ci−1,j−1 + |wi − vj |, Ci,j−1 + |vj |);
C(i − 1, k) is not computed if C(i + 1, j + 1) == 0 for j ≤ k ≤ n
C(k, j − 1) is not computed if C(i + 1, j + 1) == 0 for i ≤ k ≤ m

The optimized algorithm is given in Algorithm 4.2. The computation of
P (C, r+1, c+1) is based on P (C, r, c) and the assumption is that we do not need
to compute each cell since the local minimum will be in the neighborhood of the
last minimum cell of P (C, r, c). The heuristics is to follow the local minimum. It
is very likely that this local minimum will lead to global minimum. We explain
the success of this local minima tracking in the experiments.

Algorithm 4.2. The algorithm for the optimized structural mapping.

Function int OptimizedStructuralMapping (V, W )
IN: V , W : input strings
OUT: C: cost array
begin

matchcount = 0;
C0,0 = 0;
for i = 1 to g do

Ci,0 = Vi−1 + Ci−1,0;
endfor
for j = 1 to h do

C0,j = Wj−1 + C0,j−1;
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endfor
i = 1; j = 1;
while wi == vj do

increment i and j;
endwhile
decrement i and j;
si = i and sj = j;
i = g − 1; j = h − 1;
while wi == vj do

decrement i and j;
endwhile
increment i and j;
ei = i and ej = j;
i = si; j = sj;
while i < ei and j < ej do

oldi = i;
oldj = j;
compute the values of the neighbor cells
group cells(C, V, W, m, n, i, j);
find min neighbor of Ci,j

update (i, j) to the min neighbor index
if i = oldi + 1 and j = oldj + 1 then

matchcount + +;
endif
if i = 2 and j = 2 then

matchcount + +;
endif
if Ci,jis0

skip columns up to j;
endif

endwhile
return matchcount;

end

4.2. How to use structural mapping

Although heuristic matching produces fast results, in rare cases it may not yield
correct results. This heuristics depends on the minimum insertion/deletion dis-
tance between components. It is good to have an indicator on how to use this
heuristics. Standard deviation of length of sentences is a candidate for such an
indicator

σ(V ) =

√

Σn
i=0(|vi| − µ(V ))2

n + 1

and

µ(V ) =
Σn

i=0|vi|

n + 1

If σ(V ) is close to 0, structural mapping might fail. It means that any com-
ponent can map any component.
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Assume that we have three different granularities for a document: word, sen-
tence, and section. If structural mapping for sections might fail, structural map-
ping is only applied at the sentence level. If structural mapping at the sentence
level might fail, structural mapping is skipped and syntactic mapping is applied
directly. In practice, most documents have components at varying lengths. We
have not encountered a situation where all mappings would fail, because most
documents have components at varying lengths.

Although σ(V ) is a good indicator for small documents, it may lose its mean-
ing for large documents. It is more reasonable to take windows of the document
and apply standard deviation for these windows.

σ(V, w, k) =

√

Σk+w−1
i=k (|vi| − µ(V, w, k))2

w

and

µ(V, w, k) =
Σk+w−1

i=k |vi|

n + 1

where w is the size of the window. To see the use of windows, consider a document
where the sentences in the first half have length 10 and have length 100 in the
second half. The initial standard deviation would not be able to detect this
problem. The windowed standard deviation would identify this problem.

5. Syntactic Matching

Given two strings s and t where s ∈ Σ∗ and t ∈ Σ∗. The lengths of s and t are
denoted with |s| and |t|, respectively. Let s = s0s1s2...sn−1 and t = t0t1t2...tm−1.
Depending on the number of consecutive matches, Look Ahead Heuristics (LAH)
algorithm attempts to avoid the matching of si in t after a number of consecutive
matches is found. LAH algorithm that checks i consecutive matches will be
represented as LAH(i) algorithm. We will now define i consecutive matches
more formally.

Definition 5.1. (Consecutive i-match) Assume the matching of sp..m and
tq..n and let M(t, s, p, m, r) return the index of the first match of tr in sp..m (−1
if not found). For any q ≤ r1 < r2 < ... < ri ≤ n and M(t, s, p, m, rk) 6= −1, if
M(t, s, p, m, rk) < M(t, s, p, m, rk+1) where 0 ≤ k ≤ i, then r1 is considered as a
true match. Otherwise, r1 is a false match.

5.1. LAH(1) Algorithm

LAH(1) will start from t0 and search t0 in S until a match is found. It continues
with t1 and so on. In other words, if the algorithm was finding the LCS, first
match would be part of LCS. LAH(1) algorithm is satisfied with a match. Con-
sider the example given in Fig. 6. In this example, t2 and s3 are considered as a
match in consecutive 1-match. Actually, this is an incorrect match. Although this
matching also gives a difference between S and T , it is semantically incorrect.

The algorithm given in Algorithm 5.1 uses two match pointers, Sfuture and
Tfuture where the first mismatch occurred since the last correct match in strings
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S : a square table and a book

a circular and red table and a bookT :
�

�
�

PPPPPPPPP

Fig. 6. LAH(1) sample matching.

S and T , respectively. The number of comparisons required for LAH(1) algorithm
for the example given in Fig. 5 is 17. The number of comparisons required for
dynamic programming is 48. The dynamic programming approach correctly finds
the difference between two strings.

Algorithm 5.1. The implementation of the LAH(1) algorithm.

Procedure Match LAH 1(s, t)
IN: S = s0s1s2...sn−1, T = t0t1t2...tm−1

begin
Sold = Sfuture = Told = Tfuture = 0;
for Tfuture = 1 to m − 1 do

Sfuture = M(t, s, Sold, n − 1, Told)
if Sfuture exists then

Report(t, s, Sold, Sfuture, Told, Tfuture)
Sold = Sfuture

Told = Tfuture

endif
endfor

end

5.2. LAH(2) Algorithm

The major drawback of LAH(1) algorithm is the assumption of the first match
as the correct match. In Fig. 5, the match of t2 and s3 is incorrect. Instead, the
match of t5 and s3 is a correct match. This problem can be resolved with LAH(2)
algorithm. The line t2 − s3 intersects with the line t4-s2 (Fig. 7). The match of
t2 and s3 was an incorrect match.

We use three counters for each string: Sold, Scurrent, and Sfuture for string
S and the matching counters are Told, Tcurrent, and Tfuture for string T , respec-
tively (i.e., sold = told, scurrent = tcurrent and sfuture = tfuture). If the algorithm
is iterating on T , it must make sure that Sfuture > Scurrent. If this condition is
false, the match for current counters was wrong and the current counters get the
values of future counters for each string.

Once the condition (Sfuture > Scurrent) is satisfied, we need to update the old
and current pointers in both strings (e.g., Sold = Scurrent and Scurrent = Sfuture)
and then search for the future counters. The algorithm is given in Algorithm 5.2.
The findMatch procedure finds the first match starting from Tfuture. The num-
ber of comparisons that is required is 21 for the example in Fig. 7.

Since only one string is used for iteration and the other is used for comparison,
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S : a square table and a book

a circular and red table and a bookT :
` `

` `
` `

` `

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

PPPPPPPPP

Fig. 7. LAH(2) sample matching.

every match cannot guarantee that it is a correct match. In some cases, especially
when there is insertion or deletion, the match might be incorrect.

Algorithm 5.2. The implementation of the LAH(2) algorithm.

Procedure Match LAH 2(s, t)
IN: s = sisi+1si+2...sj−1 and t = tptp+1tp+2...tq−1

begin
Sold = Scurrent = Sfuture = i − 1
Told = Tcurrent = Tfuture = j − 1
while (Tfuture < q) do
begin

Sfuture = findMatch(s, t, i, j, p, q, Sold + 1, &Tfuture)
verify the match
if not verified then

reset Sfuture

endif
while (Sfuture ≤ Scurrent && Tfuture < q) do
begin

if Sfuture exists then
tempSold = Scurrent

Scurrent = Sfuture

Tcurrent = Tfuture

endif
Sfuture = findMatch(s, t, i, j, p, q, Sold + 1, &Tfuture)
verify the match
if not verified then

reset Sfuture

endif
increment Tfuture

endwhile
report the difference
Sold = Scurrent

Scurrent = Sfuture

Told = Tcurrent

Tcurrent = Tfuture

endwhile
end

These cases need to be verified. We use a verification patch to handle these
cases. We investigate and solve one major problem during verification: incorrect
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k
� �� �S :

a xcur b

T :

c d x1 x3

� �� �
k

�
��

````````

```
```

``` .......: correct match

Fig. 8. Verification process: incorrect substring match.

substring match. Incorrect substring match usually occurs when a replica of a
token is inserted. The distances between counters (Tfuture and Tcurrent or Sfuture

and Scurrent) are more than a threshold τ1. Let a = Scurrent, b = Sfuture,
c = Tcurrent, and d = Tfuture. In this case, sa..b is matching with tc..d and
d − c > τ1 or b − a > τ1. This threshold does not guarantee an incorrect match
but a possible indication of an incorrect match. This either indicates insertion
of tc..d, deletion of sa..b, or substitution of sa..b with tc..d. Let’s consider the
substitution case.

The original LAH(2) algorithm takes one string and matches the tokens of
the string in the other. The problem with LAH(2) is matching with a wrong
occurrence of a token. If there is a substitution, no sk (a ≤ k ≤ b) should match
tr (c ≤ r ≤ d). The verification starts with finding the first match from Tcurrent

of T and Xcur(= Scurrent +1) of S and to increment Xcur until a match is found.
Let X1 (a possible Tfuture) be the index of the corresponding match in S. If the
original match is correct, Xcur should be greater than Sfuture. We also search
the sb−1 in T . If the difference between both matches is the same, this indicates
the existence of incorrect substring match. To resolve this problem, Sfuture is
reset. The algorithm is given in Algorithm 5.3. In the algorithm, the boundary
situations are not considered where the counters may be −1 (does not exist a
match) to keep the algorithm simple.

Algorithm 5.3. The implementation of the verification algorithm.

Function Boolean verify(s, t, Tcurrent, Tfuture, Scurrent, Sfuture)
IN: s = sisi+1si+2...sj−1 and t = tptp+1tp+2...tq−1

begin
if Sfuture − Scurrent > τ1 or Tfuture − Tcurrent > τ1 then

Xcur = Scurrent + 1;
X1 = findMatch(t, s, p, q, i, j, Tcurrent + 1, &Xcur)
Xold = Xcur;
increment Xcur;
X2 = findMatch(t, s, p, q, i, j, Tcurrent + 1, &Xcur)
if (Xcur ≤ Sfuture) then

X1 = minimum(X1, X2);
endif
Xcur = Sfuture − 1;
X3 = findMatch(t, s, p, q, i, j, Tfuture + 1, &Xcur)
if sSfuture−1−X3+X1 = tX1 then

Sfuture = −1;
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return false
endif

endif
return true

end

5.3. Discussion for LAH(k) Algorithm

There are two stages in the LAH algorithm: matching and verification. The
matching component indicates whether current matching is likely to be correct
or not. If k-consecutive match returns true, this is a very good indication that
the current match is a good match. However, one of the most important parts
of the LAH algorithm is the verification component. For each k, a verification
algorithm needs to be developed. For this type of verification, the cases where
LAH(k-1) fails have to be detected and LAH(k) verification process needs to
analyze these cases so that LAH(k) will have advantage over LAH(k-1). The
performance of LAH(k) depends on the power of its verification algorithm. In
other words, it depends on the interpretation of the output of k-consecutive
match when k-consecutive match fails.

If there is repetition of a word within next k words, k-consecutive match fails.
Large k increases the probability of having duplicate words within a window of
k words. Now consider, out of k matchings, one of them is out of order. How
should the current match be considered: good or bad? If k is large, it should be
a good match. However, as the number of out-of-order matchings increases the
decision on a good or bad match becomes more difficult. Moreover, there is no
straightforward strategy to handle that. In addition, we do not want to devote
computing time to decide a good or a bad match in a more complex environment.

It is possible to ignore verification component to estimate the performance,
and an empirical ideal k value might be determined. It would be possible to see
which k outperforms the other. However, such a statistics or theoretical analysis
on k value is not useful because any LAH with verification would outperform all
of them.

Our approach on LAH(2) is actually comprehensive consecutive-match and
verification algorithm. If the incorrect substring match is considered, our verifi-
cation algorithm is checking actually a window almost any size. Comparison of
our algorithm with another LAH(k) lacking verification is not a fair comparison.

5.4. Reporting

The report of differences should be given in an easily understandable way. The
differences are given in terms of insertion, deletion, and substitution. Sometimes
the difference can only be reported one way (e.g. just insertion). It may also be
a permutation of substitution and insertion or a permutation of a substitution
and deletion. In cases where a permutation is possible, we ignore deletion and
insertion, and report the result as only in terms of substitution (e.g. a long
string is substituted with a short string). The algorithm for reports is given in
Algorithm 5.4.

Algorithm 5.4. The implementation of the reporting.
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Procedure Report(S, T, p, q, j, k)
IN: S = s0s1s2...sn, T = t0t1t2...tm
begin

if (q − p) = 1 then
if (k − j) > 1 then

t(j+1)..k is inserted
endif

elseif (k − j) > 1 then
s(p+1)..q is substituted with t(j+1)..k

else
s(p+1)..q is deleted

endif
end

Although it is rare, it is possible that structural mapping is not correct. In
other words, a sentence is not mapped to the correct set of sentences. Such cases
would output insertion and deletion of the same sequence. For example, s0=abcde
and s1=abcde. Assume that structural mapping produces incorrect mapping by
mapping abc in s0 to ab in s1; and de in s0 to cde in s1. In the first mapping (abc
- ab), it is reported that c is deleted from s0. In the second mapping (de - cde),
it is reported that c is inserted. However, an example of correct mappings would
be mapping ab to ab, and mapping cde to cde. We overcome this problem by
checking whether there is a insertion/deletion at the of the string. If there is an
insertion/deletion at the end of a string, it is not reported and that difference is
moved to the beginning of the next mapping. In the original incorrect mapping,
c was expected to be deleted. We do not report it right away, but we start the
next matching from this point. In other words, c is assumed to be the head of
de. Instead of matching, de to cde, cde (i.e., starts from c) is matched against
cde

After the results are reported, the older document can be replaced with its
difference from the new document using delta encoding. Whenever the older
document needs to be retrieved, the older document can be generated using
the delta coding based on the new document. It is better to maintain the latest
document, since the latest document may need to be accessed more than the
older document. In this way, numerous document generations using delta coding
may be avoided while saving significant space.

6. Experiments and Analysis

6.1. Data sets

We have conducted our experiments on two different types of datasets: DBWorld
(DBWORLD, 2007) and Wikipedia (Wikipedia, 2007).

DBWorld Data Set. We have chosen a subset of the messages that are sent
by DBWorld. DBWorld messages form a good set of data with duplicate and
update messages. Among 908 messages in chosen DBWorld data set, we have
identified the similar messages and present our experiments on 271 comparisons.
19% of these comparisons yield edit distance of 0.

Wikipedia Data Set. There are four major reasons why we have also chosen
Wikipedia:
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– It is publicly available.

– It keeps history of all updates made to a document.

– It has already the wikimedia diff comparison function (Wikimedia Diff, 2007)
included on their web site.

– Some documents are organized hierarchically.

We have created 9 datasets with different sizes and number of sections. The
documents contain information about ”answering machine”, ”rainbow”, ”com-
puter”, ”George W. Bush”, ”hubble”, ”Ramazan”, ”JPEG”, ”semantics”, and
”Huntsville”. Wikipedia allows to download at most 100 documents in XML
format per search item.

Wikipedia documents are sometimes composed of sections. This organization
allows us to check how S2S performs if sections are allowed. The availability of
wikimedia diff provides an opportunity for us to compare our algorithm against
a good, new, and in-use wikimedia diff algorithm. Unfortunately, we were not
able to find much documentation about wikimedia diff except the comments in
the code and help document.

6.2. Preprocessing

The first stage is the generation of frequency matrix for DBWorld data set. All
the email messages were parsed using Lex & Yacc and created our database for
our experiments. During parsing we eliminated all the extra spaces, irrelevant
characters (like ”==================”) to build a sequence of words
for DBWorld data set. We have divided the text using two punctuation marks ”.”
and ”?”. We treat email addresses (e.g., raygun@cs.uah.edu) or web addresses
(e.g., http://www.cs.uah.edu) as a single word by ignoring the ”.” in the string.
However, since this division algorithm is not accurate, the ”.” at the end of
abbreviations is also considered as an end of sentence. During frequency matrix
generation we eliminated the stop words like - are, on, an, the, is, a, why, when,
who and some more. For our purposes, we assumed that these words do not
affect the similarity of two documents. We have not used LSI in our experiments
since frequency matrix is enough to serve for our purposes. We have used the
Text node for Wikipedia documents in XML format.

6.3. Experimental Analysis

6.3.1. String Comparisons and Granularity

Number of String Comparisons. Each word is searched for a limited number
of sentences based on the output of TraceMatch algorithm in Section 4. This
avoids the search of a new word till the end of the other document. A word may
need to be matched for any word in the other document in traditional matching
algorithms.

Fig. 9 displays the graph for number of string comparisons on “George W.
Bush” data set. This graph shows that the number of string comparisons for
our hierarchical and optimized matching algorithms is almost the same for all
except at the word level. The number of string comparisons might be more than
the number of comparisons in traditional string matching since a word may need
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Fig. 9. The graph for the number of string comparisons for ”George W. Bush”
data set.

to be compared against all the words in the other document. Fig. 10 shows the
ratio of the number of string comparisons to the number of words on ”George
W. Bush” data set. The maximum number of words represents max(|S|, |T |)
whereas minimum number of words represents min(|S|, |T |). The average ratio
for maximum number of words is 0.982 whereas it is 1.006 for minimum number
of words. The average of these values is 0.994. For similar documents, it can
be stated that our algorithm has linear complexity with respect to the number
of words. In Fig. 10, the lower values indicate possible deletion/insertion at
the of a string whereas high values indicate the number of comparisons due
to verification. The advantage of our algorithm is its limiting the number of
unnecessary matching by using structural mapping.

Granularity. The ”answering machine” document had initially one section,
and the final number of sections is eight. The section level algorithm attempts to
match at the section level. However, if the section level mapping is not success-
ful due to the same number of sentences in consecutive sections, the structural
mapping is applied at the sentence level. Fig. 11 shows the number of cell compu-
tations for sentence and (optimized) section levels. For small number of sections,
the section level does not have any advantage over sentence level mapping. How-
ever, the advantage of section level mapping becomes obvious at the third quarter
of Fig. 11. The number of computed cells for section level is far more less than the
number of computed cells for sentence level. The effect of optimization has also
been shown in the figure. The number of cell computations for optimized section
level is 48.4 whereas it is 150.5 for non-optimized section level. The number of
cell computations for sentence level is 245.1. The average number of sentences
in “answering machine” data set is 17.5. The number of cell computations for
optimized section level is little bit less than three times the average number of
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Fig. 10. The graph for the ratio of string comparisons to the number of words
with respect to the number of words for ”George W. Bush” data set.

Fig. 11. The graph for the effect of granularity for ”answering machine” data
set.

sentences. This also shows that the number of cell computations for optimized
section level is linear with the number of sentences. Note that to compute the
value of a cell, we need the values for three neighboring cells. That is why the
number of cell computations is very close to three times the average number of
sentences.

LAH(k) without verification. We have performed experiments on the ”an-
swering machine” data set for LAH(1), LAH(2), LAH(3), LAH(4), and LAH(5).
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We have got the accuracy results 85%, 89%, 77%, 38%, and 9% for LAH(1),
LAH(2), LAH(3), LAH(4), and LAH(5), respectively. As we mentioned in Sec-
tion 5.3, the repetitions within a window of k words degrade the performance of
LAH(k) without verification. We have realized that articles (like a, an, the) are
very likely to be repeated within 5 words in a document. This is the major reason
for LAH(5) having low accuracy results. These results also show that LAH(2)
performed better than others without any verification.

6.3.2. Comparison with Wikimedia Diff

The wikimedia diff algorithm firstly eliminates common lines from the the begin-
ning and end of two documents. Then it uses MD5 hash function (Rivest, 1992)
to index (or to check the existence of a substring in the other). Wikimedia diff
starts with a sequence of string comparisons and uses hash data structure for
the rest of the operations. In other words, their critical operations are performed
in a different domain.

To compare S2S with wikimedia diff, the following steps are taken:

– Their comparison is in terms of lines while our comparison is in terms of words.
When comparing two lines, the words (or characters) are actually compared.
For line comparison, the number of words in a line is counted and interpreted
as the number of word comparisons.

– From time to time, their algorithm checks whether a string is empty or not
(because of using hash). These comparisons are also included in the total
number of comparisons.

– The effect of hash function is interpreted as follows. Sometimes an input for
the hash function is a complete line. Since all the characters (or words) in a
line need to be processed for the key, using hash may not be more efficient
than plain string comparison since hash function includes multiplication and
mod functions. Whenever a hash function is called, the number of words in
the input is counted.

S2S has word comparisons and cell computations. On the other hand, wikime-
dia diff has word comparisons and number of words for MD5 hash computation.
The total number of operations for S2S is the sum of the number of word com-
parisons and the number of cell computations. For wikimedia diff, the number
of operations is the total number of word comparisons plus the number of words
during MD5 hash computation.

Performance. Figure 12 displays number of operations on “answering ma-
chine” and “George W. Bush” data sets. In Figure 12, it can be seen that the
number of operations for optimized S2S at section level is significantly better
than that of wikimedia diff. The average number of operations for optimized
S2S (section), non-optimized S2S (section), and wikimedia diff are 341, 443, and
435 for “answering machine” data set, respectively. For “George W. Bush” data
set, the average number of operations for optimized S2S (section), non-optimized
S2S (section), and wikimedia diff are 1865, 3267, and 5905, respectively. It should
be noted that even non-optimized S2S is comparable with wikimedia diff.

Stability. To measure the stability of the two algorithms, we have changed
the first and last word in the document. Normally, it is expected that such two
changes should not affect the number of operations. Figure 13 shows the results
of the stability of the algorithms on “answering machine” data set. Although
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(a)

(b)

Fig. 12. The graph for the number of operations in S2S and wikimedia diff a)
”answering machine” data set, b) ”George W. Bush” data set.

S2S is almost not affected at all, there is a significant change in the number of
operations for wikimedia diff. The change of average number of operations for
optimized S2S at section level is 4.01 whereas it is 662.71 for wikimedia diff. This
also shows that the performance of wikimedia diff relies on the similarity of lines
at the beginning and the end of the document. However, the performance of S2S
is significantly more stable than the performance of wikimedia diff.
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Fig. 13. The graph for the increase in the number of operations in S2S and
wikimedia diff after the document is slightly changed.

6.3.3. Accuracy

We would like to note that it is possible to match two strings in multiple ways.
Consider two strings from ”answering machine” data sets: s1 =”An ’answering
machine’ is a device for automatically answering [[telephone]] calls and recording
messages left by callers.” and s2 =”An ’answering machine’ also known as an
’answer machine’ (especially in UK and British commonwealth countries), is a
device for automatically answering [[telephone]] calls and recording messages left
by callers.” The update made from s1 to s2 is to insert ”also known as an ’answer
machine’, (especially in UK and British commonwealth countries),” between ma-
chine’ and is a (i.e., s2 =”An ’answering machine’ also known as an ’answer
machine’ (especially in UK and British commonwealth countries), is a
device for automatically answering [[telephone]] calls and recording messages left
by callers.”). However, it is also possible to match these two strings by first in-
serting ”also known as an ’answer” between answering’ and machine’, and then
inserting ”(especially in UK and British commonwealth countries),” between
”machine’” and ”is a” (i.e., s2 =”An ’answering machine’ also known as an
’answer machine’ (especially in UK and British commonwealth coun-
tries), is a device for automatically answering [[telephone]] calls and recording
messages left by callers.”). In the later case, the edit distance is equal to the the
the edit distance of the first case. However, the editing in the first matching is
the correct editing. We accepted both of them as correct in our experiments. We
should also mention that even getting a smaller editing distance does not not
necessarily indicate that it is the best match between two strings.

The accuracy of S2S and wikimedia diff is given in Table 4. We have provided
the S2S results for optimized section level when comparing against the wikimedia
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Data set # of min max min max min max S2S wikimedia
docs words words sentences sentences section section Accuracy Accuracy

dbworld 271 48 1232 2 84 1 1 96.7 N/A
answering
machine 100 67 413 6 33 1 8 99% 94%
computer 100 1 2764 1 122 1 16 99% 91%
george
w bush 100 471 1681 22 92 1 12 99% 90%

huntsville 23 25 75 1 3 1 1 100% 91%
hubble 36 12 68 1 2 1 2 100% 100%
jpeg 100 795 1512 37 83 1 23 98% 85%

rainbow 100 1 1048 1 45 1 7 98% 94%
ramazan 17 2 417 1 26 1 1 100% 94%
semantics 100 10 380 2 22 1 7 99% 93%

Overall 676 1 2764 1 122 1 23 98.9% 92.4%

Table 4. The comparison of accuracy for wikipedia data set.

diff. It can be seen that the accuracy of S2S is better than the accuracy of
wikimedia diff. However, it should be noted that the 1% failure of S2S does
not indicate incorrect matching but indicates the existence of a better match
between documents. S2S still produces valid results in those cases.

In our experiments, we have realized that two measures are helpful to deter-
mine the accuracy of the algorithm: edit ratio and difference ratio. These values
are determined as follows:

EditRatio(s, t) =
edit distance

max(m, n)

and

DifferenceRatio(s, t) =
insertDist + deleteDist

max(|m − n|, 1)

The edit distance checks whether the number of operations are reasonable
with respect to the length of strings. The difference ratio checks whether the
number of insertion or deletion operations are reasonable with respect to the
difference in the length of strings. Our experiments reveal that if EditRatio > 0.2
or DifferenceRatio > 2, there is a possible mismatch of strings.

6.4. Complexity Analysis

For optimized structural mapping, we get O(n) complexity. The original com-
plexity of the structural matching algorithm is O(mn) where m and n represent
the number of sentences. The complexity of optimized structural matching is
O(m + n + 3 ∗ max(m, n)), which is equivalent to O(n) when the number of
sentences in two strings is close.

For syntactic matching, if two strings S and T are the same, the time com-
plexity of our algorithm is O(n) where n is the lengths of these strings. In our
experiments, the length of two strings is very close to each other. The worst case
for LAH algorithm occurs, when a word in T does not exist in S. In this case, the
string S will be iterated to its end. If two strings S and T are totally different,
the complexity of this algorithm is O(mn). Since our algorithm only considers
similar documents, the worst case hardly occurs.
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Given two strings S and T where S ∈ Σ∗ and T ∈ Σ∗. Let S = s0s1s2...sn−1

and T = t0t1t2...tm−1. Since we compare similar messages, assume sim of the
words in T exist in S where 0 ≤ sim ≤ 1. If sim is 1 all the words of T exist in
S. Usually, sim is more than 0.9 in our experiments. For LAH(1), the number of
comparisons is Ω(n) in the best case. In this best case, S and T are exactly the
same. Let g be the number of missing words of T in S and g = (1 − sim) ∗ m.
In the worst case, the words that do not appear in S will appear first in T .
This leads to g*n comparisons for missing words. For other words, only m − g
comparisons are needed. So, the number of comparisons will be

g ∗ (n − 1) + m = (1 − sim) ∗ m ∗ (n − 1) + m
= mn ∗ (1 − sim) + m ∗ sim

If sim is guaranteed that 1 ≥ sim ≥ (1 − c1/n), the worst case complexity
will be O(m) where c1 is constant greater than or equal to 0. Since structural
mapping divides the problem into smaller problems, there is an upper-bound
on n. The average length of a sentence is 28 in our experiments. We get O(m)
complexity during our experiments. In other words, such a constant c1 exists.

The approximate string matching algorithms like string matching with k
mismatches and string matching with k errors do not provide useful information
since we do not have any idea on k. Since we are interested in the differences,
these algorithms will return the position where the matching starts and leave it
to the user to identify the differences or will ask to use string editing distance
methods to report the distance.

7. Limitations and Future Work

Our algorithm only considers three operations when matching two strings: inser-
tion, deletion, and substitution. Our algorithm is not handling swap operations.
In other words, if there is a swap operation our algorithm reports this case twice
as 1) missing of words in one sentence and 2) addition in the other sentence.

For syntactic matching algorithm, we have evaluated every word whether it
is a stop or a frequent word or not. In some cases, matching of frequent words
causes a problem. For example, ”Call for Papers” messages include program
committee at the end message which includes the affiliation information. This
part includes “University of” sequence for almost each member. This corresponds
to a back to back match for two words. We realize that the matching of frequent
words within a window should be omitted to find the correct match. Eliminating
frequent words in matching solves this problem, but we leave this as a future
work. The granularity of what is matched plays an important role. In this version
of the algorithm, we did not consider any improvement for this part and leave it
as future work.

If there are cases like swapping or frequent sequence repetition, there will be
duplicate information in the report. The report can be reevaluated to eliminate
these problems. At this level, the results are satisfactory and consider it as a
future work.

We have encountered HTML documents in our data sets. Our algorithm usu-
ally failed for HTML documents. But we believe that if the structural mapping
is performed considering the structure of HTML documents, our algorithm will
also be successful.
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8. Conclusion

In this paper, we have proposed our S2S matching approach that is composed of
a heuristic structural mapping and syntactic matching algorithm. The heuristic
syntactic matching algorithm is an approximation algorithm that considers i
consecutive matches between two documents. The structural mapping can be
improved by creating more hierarchies and performing mapping by creating a
projection of documents (like table of contents) at the high levels. In cases where
this algorithm fails, the complex algorithms can be used. As long as there is a
way to split the documents into subdocuments, our algorithm will be successful.
The structural mapping part also allows and motivates parallel processing. We
are planning to conduct more experiments on XML data and genome sequences.
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