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ABSTRACT 

Heterotrimeric G proteins interact with G protein-coupled receptors in response to stimulation by 

hormones, neurotransmitters, chemokines, and sensory signals to intracellular signaling cascades. 

Recently reported studies indicate G protein subunits play a significant role in different eukaryotic diseases 

including inflammation, neurological diseases, cardiovascular diseases, endocrine disorders as well as 

plant pathogen response, infectious hyphae growth, differentiation and virulence of pathogenic fungi. 

Thus a study of their functions, signaling pathways, and protein interactions may lead to the development 

of various preventive approaches. The diversity of alpha, beta and gamma subunits of G proteins 

necessitates a need for the prediction algorithm that helps in the identification of new proteins such as G 

beta where WD-40 repeats are not well characterized. The currently available techniques for finding G 

proteins are homology based search analyses and wet lab experiments, which are not very effective in 

finding new classes of proteins. We present here a robust computational method for finding new G proteins 

and their homologs using SVM based pattern recognition algorithm. Several physicochemical and 

compositional properties including dipeptide, tripeptide and hydrophobicity composition are used for 

generating the SVM classifiers. This method has 96.17%, 95.38%, 97.6% sensitivity and 99.45%, 100%, 

100% specificity on test sets for G protein alpha, beta, and gamma subunits, respectively. This algorithm 

correctly predicts the known alpha, beta and gamma subunits reported in literature. One important 

contribution of this algorithm is, it helps in improving genome annotation of several proteins as G proteins 

and serves as a useful tool for comparative genomic analysis of G proteins. Using this method, novel G 

protein subunits are predicted in 31 genomes covering plant, fungi and  animal kingdom.  

 

Availability: The software is available at the website 

http://biomine.cs.uah.edu/bioinformatics/svm_prog/scripts/GProteins/vectorg.html   

 

Contact: raygun@cs.uah.edu 

 

Supplementary files: The supplementary files are available at In Silico Biology online. 

 

Keywords: Heterotrimeric G proteins, SVM, compositional properties, signal transduction.  
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INTRODUCTION   

 

GTP-binding proteins (G-proteins) are key mediators of many important cellular functions such as 

signal transduction, cell cycle control, vesicle trafficking pathways, nucleo-cytoplasmic transport, 

phagocytosis, and cell migration. G protein subunits are involved in the coupling of a variety of cell surface 

receptors to different intracellular signaling pathways. G proteins may possibly exert cellular functions 

other than acting as signaling transducers (Melien, 2006). Heterotrimeric G proteins have three subunits: 

G alpha, G beta and G gamma. Alpha subunits possess an intrinsic GTPase activity, which enables them 

to act as time switches. Hydrolysis of the bound GTP to GDP promotes the re-association of alpha subunit 

with beta-gamma dimer and renders the G protein in an inactive form.  

Investigations into the G protein signaling have revealed their association with eukaryotic diseases 

(Hauge, et. al.,  2006), growth (Wang et. al., 2006; Chen et. al., 2006), development (Wang, et. al 2006), 

pathogenesis (Prados-Rosales et. al., 2006; Yamagishi et. al., 2006; Sarah and Assmann, 2005; Trusov, 

et. al 2006.), fungal mating (Kawasaki, et. al., 2005), and nod factor signaling in legume hosts by 

Rhizobium bacteria (Kelly, and Irving, 2003). Many complex human diseases have roots in the 

malfunction of G proteins. For example, Pseudohypoparathyroidism Type I is a disease that results from 

a defective G alpha (Carter, et. al., 1987), which results Albright's hereditary osteodystrophy (AHO) 

(Ahrens and Hiort, 2006). G alpha has oncogenic potentials, leading to the development of human 

pituitary, endocrine, Leydig cell, Ovarian and adrenocortical tumors (Farfel et. al., 1999). G beta3 subunit 

is related to susceptibility to essential hypertension and inter-individual variation in blood pressure 

(Hegele et. al 1998). G alpha3 in Botrytis cinerea is required for proper plant host surface recognition and 

penetration ability of germinated conidia (Doehlemann et. al., 2006).  New approaches to drug 

development focus on targeting these G proteins to abrogate associated diseases. For example, Suramin 

drug disrupts receptor-G protein coupling by blocking association of G protein alpha and beta gamma 

subunits (Chung and Kermode, 2005). Anticancer activity of BIM-46174, an inhibitor of the 

heterotrimeric G alpha/G beta-gamma protein complex (Prevost, et. al., 2006), is another example for the 

need to study G protein and identification of new classes.  

Experimental identification of G proteins is an arduous task. Methods like expression profiling, are used 

to identify genes involved in cellular processes, helps in observing only transcriptional events. 

Computational algorithms based on homology search can aid in identification, but this procedure has 

limitations when there is no characterized homologue available. For example, WD-40 repeats are present 
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in more than 30 protein families and are poorly characterized. G Beta also has 7 WD-40 repeats, this 

makes this class of heterotrimeric G proteins difficult to characterize as G beta subunits using homology 

based methods. Sequence similarity methods have limitations to classify these proteins. In order to 

overcome these limitations, machine learning methods have been used. Support Vector Machines 

classification method is better in some aspects than simple BLAST (Altschul et. al., 1997) or Hidden 

Markov Model (HMM)-based methods (Karchin et. al., 2002).  and Artificial neural networks (ANN) as 

it effectively handles noise, large datasets/input spaces (Zavaljevski et al., 2002) and structural risk 

minimization principle (Zhao et al 2006). Since structure and function of a protein are determined by its 

preference for certain amino acids [Ofran and Margalit, 2006], compositional properties of protein 

sequences may provide an enhanced way of functional analysis. Several computational methods have been 

developed over the past decade using compositional properties like pTARGET enables prediction of nine 

distinct protein subcellular localizations in eukaryotic non-plant species (Guda and Subramaniam, 2005), 

POPPs for clustering proteins into families based on peptide composition (Wise 2002), SPAAN for 

prediction of adhesin proteins in bacteria (Sachdeva et. al., 2005), PROFEAT for computing commonly-

used structural and physicochemical features of proteins and peptides from amino acid sequence (Li et. 

al., 2006), pSLIP uses multiple physicochemical properties of amino acids to predict protein subcellular 

localization in eukaryotes across six different locations, namely, chloroplast, cytoplasmic, extracellular, 

mitochondrial, nuclear and plasma membrane (Sarda et. al., 2005) and many more for the prediction of 

protein function, structure, and localization.  

Pattern recognition algorithm based on statistical features is an important tool in assigning biological 

function of proteins. The fraction of experimentally analyzed proteins and the information on the function 

is limited for most of the proteins. A study for the identification of G protein subunits using a pattern 

search tool and BLAST by gpDB (G proteins/GPCRs relational database) (Elefsinioti et. al., 2004) is 

limited to amino acid sequence. In Vector-G, we adopted multi modular approach using dipeptide, 

tripeptide and hydrophobicity composition. In the present work, SVM classifier based on the sequence 

features has been trained to predict G proteins subunits in higher and lower eukaryotes. The protein data 

sets used for training in the present study are G alpha, beta and gamma as reported in the literature and it 

covered a wide representation of eukaryotic organisms. The sequence attributes like dipeptide, tripeptide 

and hydrophobicity composition are used for G protein subclass prediction in a wide spectrum of species.  

Genomes of very diverse organisms including human, plants, and newly sequenced fungal genomes 

having different habitats like saprophytic (Uncinocarpus reesii), pathogenic (C. neoformans, M. grisea, 
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B. cinerea) and symbiotic (L. bicolor) are used for testing and prediction of G protein subunits. These 

diverse organisms show conserved principle of cell signaling and pathogenesis and properties that make 

them unique. For example, C. neoformans virulence is controlled by a nutrient sensing pathway related 

to S. cerevisiae filamentation cascade. This pathway involves a heterotrimeric G protein which signals 

via adenyl cyclase (Pan et al., 2000; Wang et al., 2000). The SVM-based algorithm developed in the 

present study will serve as an essential tool for the large-scale genomics initiatives where high-

throughput methods are needed to annotate and identify protein functions based on sequence information 

especially for genomes that are not annotated or poorly annotated. 
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SYSTEMS AND METHODS 

Extraction of Features 

The SVM classifiers are trained based on three different physicochemical properties: dipeptide 

frequencies, tripeptide frequencies, and hydrophobic composition. The advantage of dipeptide and 

tripeptide composition over single amino acid composition is that it encapsulates information about the 

fraction of amino acids as well as their local order (Kumar et. al., 2006).  

Dipeptide frequencies (DF) 

The total number of amino-acids is 20 and the total possible dipeptides are 400. A matrix of 400 dipeptides 

of each protein sequence is generated and fed as an input to SVM. If any dipeptide is not present in a 

sequence, its feature value is not used for training. The frequency of each dipeptide is calculated by the 

following formula: 

DFij =  
N

N
ij

 

Nij = total number of ij-th dipeptide 

N = Total number of possible dipeptides, 

where i, j = 1–20. 

 

Tripeptide frequencies (TF) 

The total number of possible tripeptides is 8000. The training method is similar to dipeptide module. The 

frequency of each tripeptide is calculated by the following formula: 

TFijk =  
N

N
ijk

 

Nijk = Total number of ijk-th tripeptide 

N = Total number of possible tripeptides, 

where i, j, k = 1–20. 

 

Hydrophobic composition (HC)  

The arrangement of hydrophobic and hydrophilic amino acid residues in a protein plays an important role 

in protein folding, interaction with other molecules and catalytic mechanisms. Hydrophobic and 

hydrophilic amino acids positions in a protein sequence create different type of proteins with different 

amphiphilic features (Chou, 2005). To compute hydrophobicity, the amino acids were classified into five 
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groups based on their hydrophobicity scores: (–8 for K, E, D and R), (–4 for S, T, N and Q), (–2 for P and 

H), (+1 for A, G, Y, C and W) and (+2 for L, V, I, F and M) (Brendel et al., 1992). The final hydrophobicity 

composition is computed as: 

HDg =  
N

N
g

 

Ng = number of amino acids belonging to group ‘g’ in a protein sequence, where ‘g’ ranges from 1–5. 

N = total number of amino acids in the protein.  

 

We use moments to determine the distribution of amino acids in the sequence. The position of an amino 

acid is determined by the distance from the beginning of the protein. Moment describes the shape of 

distribution. First order of moment is mean and describes the central value. Second order of moment is 

variance which describes the dispersion. Third moment is skewness which describes the asymmetry. Forth 

order of moment is kurtosis which describes peakedness (Press 1992). Higher orders of moment are not 

very well described. We empirically tested our results on different order of moments and we used 2-5 

order of moment of position of amino acids.  

The order of moment of position is calculated as follows: 

Mgr = r-th order moment of positions of amino acids in group g, where r = 2–5.  

Mgr = 



 



















gi
g

r

N

P ggi )( 
,  

Where Pgi = the position of i-th amino acid belonging to group g; Ng is the total number of amino acids 

in group g, μg is the mean of all positions of amino acids of g group and computed as: 

μg = 


Ng

i g

gi

N

P

1

,.  

A total of 25 inputs representing the hydrophobic composition of a protein were fed to the SVM.  

Database Creation 

Positive  Database 

Protein sequences were downloaded from NCBI Genbank http://www.ncbi.nlm.nih.gov with the keyword 

G proteins alpha subunit, beta subunit, and gamma subunit. Manual curation was done and sequences 

having keywords putative, hypothetical, patent, unknown, partial sequence, and gene product were 

removed.  

http://www.ncbi.nlm.nih.gov/
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Negative  Database 

Protein sequences with a keyword actin binding FH2 protein, ribosomal protein, acyl Co-A, alcohol 

dehydrogenase, Autophagy-related protein, cartilage matrix proteins, clusterin, cpn60, cullin, 

decarboxylase, flagellin, Cell division protein FtsA, helix-loop-helix proteins, tyrosine aminotranferase, 

hydroxylase, isomerase, kinase, oxidoreductase, rad24, replicase, spore coat protein, spore germination 

protein, ZipA were downloaded. Proteins were chosen from a wide-spectrum of organisms and protein 

families to include diverse representatives.  

Second level database for G beta proteins: 

The traditional classifiers cannot distinguish G beta proteins from other WD repeat proteins since G beta 

proteins contain WD repeats. A positive data set of known G beta proteins and a negative data set of WD 

repeat proteins were created to distinguish G beta proteins from WD repeats. The sequences were 

downloaded from http://www.ncbi.nlm.nih.gov. Unknown (un-annotated) WD repeat proteins were 

removed from negative data set. 

Training datasets for subunits: 

The positive training dataset for G alpha is comprised of only G alpha proteins, and negative training 

dataset for G alpha is created as the combination of G beta, G gamma and negative database. Similarly 

the databases of G beta and G gamma were created. Those sequences that have similarity more than 90% 

were removed using ClustalW (Thompson et. al., 1994). The total number of G proteins in positive 

database was 1250 out of which G alpha were 716, G beta were 120 and G gamma were 414. The total 

number of proteins in negative database was 1978. For second level database, the total G beta proteins 

were 120, and negative proteins (WD repeat proteins other than G beta) were 89. 

ALGORITHM 

Support Vector Machine 

SVM tool, SVMLight, (Joachims, 1998) was used for the classification of G-Proteins. SVM classifier was 

generated using cost factor, model complexity, biased hyperplane and a kernel function. The linear, 

sigmoid and radial basis kernel functions were used. SVM is allowed a tradeoff (SVM light parameter 

‘C’) between the training error and the margin in order to avoid model over-fitting (Tan et al., 2006). 

Allowing a training error may allow larger margin. Larger margin avoids model over-fitting.  

 

http://www.ncbi.nlm.nih.gov/
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Selection of Parameters  

In our experiments, biased and non-biased hyperplanes were used to provide flexibility to the kernel 

function. We have tested three kernel functions with the gamma parameter in the range [1, 3000], the cost 

factor ranges in [0.01, 2000] and tradeoff between training error and margin lies in [0.1, 51]. We have 

tested over 2000 combinations of these parameters. 

 

Evaluation of the Classifier  

Leave-One-Out (LOO) method was used to test the correctness of each model. In LOO, if there are N 

data samples, 1 data sample is separated and SVM is trained based on the remaining N-1 training data 

samples. A classifier is generated for each data sample. The classifier trained for item i is SVMi. Each 

data sample i is classified with respect to its classifier SVMi. The final SVM output is calculated based 

on precision and recall of each module and decision value for data samples by the classifier. LOO is 

equivalent to K-Cross validation where K becomes equal to N. 

 

Selection of the Classifier  

The best classifier is chosen based on its LOO performance. For some data sets, it is possible to get the 

same precision and recall values. In case of equality, we have considered the error of ζα-estimate. ζα-

estimate gives a pessimistic error bound on the classifier. The risk of overfitting is balanced with the error 

of ζα-estimate.  

Performance Measures 

For each class, a SVM classifier is trained for each module, precision (positive predictive value; Pr) and 

sensitivity (recall; Sn) values are utilized to estimate the correctness and confidence on the result. PrDF, 

PrTF, and PrHC represent the precision values of the selected classifiers for modules DF, TF, and HC, 

respectively. In the same way, SnDF, SnTF, and SnHC represent the recall values of the selected classifiers 

for modules DF, TF, and HC, respectively. PrDF and SnDF were used to calculate F measure for DF 

module. In the same way PrTF, SnTF, and PrHC, SnHC were used for calculating F measure for TF and 

HC module respectively. 

 

Sn ii

Sn ii
F i




Pr

*Pr*2
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where i є {DF, TF, HC} 

 

The Sensitivity, Specificity and Precision are calculated as follows: 

 

Recall or Sensitivity Sn = 
FNTP

TP


 

Specificity Sp = 
FPTN

TN


 

Precision = 
FPTP

TP


 

 

where TP, TN, FN and FP stands for true positive, true negative, false negative and false positive 

respectively.  

 

For each protein, the SVM classifier returns a decision value. If the decision value is positive, the protein 

is classified as a positive prediction otherwise as a negative prediction. Therefore, high positive decision 

values or low negative decision values indicate better confidence of membership to the corresponding 

class. The notation vi denotes the decision value obtained from classifier i where i {DF, TF, HC}. In our 

experiments, zero is used as threshold. Since, all classifiers yielded good precision and recall on a training 

set. We tested higher threshold and we almost got same results in our experiments. The modules that yield 

poor results on LOO are eliminated by threshold τ during classification. Based on this threshold τ, each 

classifier is assigned a weight (w), such that whenever the trust of a classifier goes below τ the weight is 

0 and whenever the trust takes the maximum value, the weight is 1.0. The weight of a classifier is computed 

as follows: 

 

If (Fi- τ)<0 then wi=0 

Else wi=(Fi- τ)/ (100-τ) 

 

where i {DF, TF, HC}. 

In addition to rational weight values ranging in [0,1.0], the binary weight values provide information 

whether a classifier classifies as positive or not. The binary weight value is determined as: 

 

if module i returns as positive  

mi=1  

else mi=0 
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where i {DF, TF, HC}. 

Based on these parameters, we have defined one metric to analyze the results: dscore.  

Decision Score (dscore): The decision score determines how good the classification is. For positive 

class, high score values are desirable. The score ranges between 0 and ∞. The score is calculated as  






M

i

ii
wvdscore

1

*   

 

Normalized score (nscore): dscore values indicate distance from the margin. Since the dscore value might 

be too high or too low, it doesn’t give good indication of results. So we mapped dscore into [-1, 1] interval. 

We used 4 constants here: ‘x’ as a threshold for the highest dscore for positive classes, ‘z’ as a threshold 

for the lowest dscore for negative classes, ‘a’ as a threshold for nscore for a protein highly likely to be in 

positive class, ‘c’ as a threshold for nscore for a protein highly likely to be in negative class. The dscore 

values that are above ‘x’ show high likelihood of being a member of the class. In the same way, dscore 

values that are less than ‘z’ belong to a negative class. dscore values above ‘x’ are mapped to [a, 1], 

whereas dscore values between ‘0’ and ‘x’ are mapped to [0, a]. Negative dscore values less than ‘z’ are 

mapped to [-1, c], whereas negative dscore between ‘z’ and ‘0’ are mapped to [-c, 0]. The max score is 

chosen as highest dscore value among test set values (a and c) chosen as ‘0.9’, ‘-0.9’ respectively, since 

values close to ‘1’ reliably indicate good membership to the positive class and values close to ‘-1’ reliably 

indicate membership to negative class. ‘x’ and ‘z’ are chosen as 1 and -1, respectively.  

 

If  dscore >x   

nscore = min(1, a+(((1-a)*(dscore –x))/(maxscore-x)) 

dscore in [0,x]   

nscore = (dscore*a)/x 

dscore in (z,0) 

 nscore = (dscore*c)/z 

dscore <z 

 nscore = max (-1, c- (1+c) *(z-dscore))/(z-minscore)) 

 

 

Genome wide prediction 
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The whole genome sequences of different organisms were downloaded from JGI eukaryote genomes 

website http://genome.jgi-psf.org/  and from Broad institute genome sequence data 

http://www.broad.mit.edu/annotation/fgi/. We covered 31 eukaryotic organisms for prediction. The 

detailed list of organisms and prediction results for G proteins are shown in supplementary table 1.0, 1.1, 

1.2, 1.3.  

RESULTS AND DISCUSSION 
 

Performance  

The performance of Vector-G is tested by LOO (leave one out) method while training. Three 

separate test sets of 182 G alpha, 65 G beta and 250 G gamma sequences and same number of sequences 

in negative test set were analyzed further to see the performance of SVM predictions. The Vector-G 

software predicted with 96.17%, 95.38%, 97.6% sensitivity and 99.45%, 100%, 100% specificity for 

alpha, beta and gamma subunits respectively on a test set. The performance of three classes is shown in 

Fig 1-a, b, c. Except 7 proteins all 175 G alpha are predicted with >0.9 nscore. In G beta and G gamma, 3 

and 6 proteins are predicted as false negatives. The sensitivity and specificity of dipep, tripep and 

hydrophobicity modules for each class are shown in Table1. The HC module gave low sensitivity and 

specificity than TF and DF module but it is still a critical parameter because hydrophobic and hydrophilic 

residues play a very important role in protein folding and interaction with other proteins and help in 

prediction. The TF module provides better results than DF and HC modules. The TF module provided 

almost excellent results when the similarities among proteins increase. Alpha class shares good similarity 

among the proteins (with respect to features or structure). Tripep module works very well for this class. 

Please see Table 1. We considered values from all modules for final prediction because that provided the 

best result.  

BLAST tries to find a similar protein based on the homology. In the database, it is possible that 

there are multiple hits per protein in the test set. In such a case, even if one of the proteins is removed, 

another match is available for BLAST. Therefore, LOO is not an effective method of evaluation of BLAST 

in presence of multiple hits in the database. Instead of leaving one protein out, we removed several sets 

(or clusters) of proteins having similar homology level from the training set (see Fig 2). In such a case, 

we are able to measure and observe the performance of BLAST and our system. So we performed 3 

experiments. G-alpha training set has 280 G-alpha proteins as a positive set and 1587 proteins as a negative 

set. The negative set was prepared with the same categories of proteins as mentioned in methods. G-beta 

training set has 67 G-beta proteins as a positive set and 1800 proteins as a negative set. G-gamma training 

http://genome.jgi-psf.org/
http://www.broad.mit.edu/annotation/fgi/
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set has 88 G-gamma proteins and 1779 proteins as a negative set. In case of G-beta and G-gamma proteins, 

vector-G is able to predict some proteins which blast cannot. 

 

Blast and SVM performance was compared on 3 test sets individually. 

Beta Test Set  

The SVM was trained again on a subset of training database after removing proteins that fall in the 

same cluster. In case of G beta subclass, there is a considerable similarity between G beta and other WD-

40 repeat containing proteins. BLAST is not powerful to distinguish G beta from other WD-40 proteins. 

SVM has overcome this feature since it does not only depend upon sequence similarity. Out of 40 test set 

proteins, 8 proteins are not correctly predicted by Blast. Vector-G has predicted 4 proteins incorrectly. 

This experiment clearly indicates the 10% higher performance of SVM than Blast. One protein gi-

72129013 was not correctly predicted by SVM but correctly predicted by Blast. 5 proteins that are 

correctly predicted by Vector-G (but incorrectly predicted by Blast) are Gi – 88766385, 1001939, 

5174447, 77745452 and 30024660. Blast finds incorrect hits for these proteins with gi – 148655047, 

66846416. Gi – 148655047 has unusually high number of WD repeats (10) which predicts that it is not a 

G-beta protein which generally has 7 WD repeats. Gi- 66846416 has 8 WD-repeats as predicted by 

Interpro (Quevillon et. al. 2005). There are some variations in the number of WD repeats in G-beta but 

the number of WD repeats usually varies from 5 to 7 repeats. Blast is not effective enough to distinguish 

two sequences when two sequences have high similarity. For detailed results please see supplementary 

file: beta_blast_comparision.xls 

Gamma Test Set  

In case of G gamma test set (48 proteins), blast is not able to find hits for 17 proteins. Out of these 17 

proteins vector-G is able to predict 7 proteins correctly. Protein having gi- 55957436 was not correctly 

predicted by SVM but blast predicted this correctly. This indicates the 12.49% higher performance of 

SVM over the blast. For detailed results please see supplementary file: gamma_blast_comparision.xls 

 

Alpha Test Set  

In case of G alpha test set, the number of hits for each protein with training database was very 

high. Determining and removing clusters was more difficult than the one in beta test set. Our results are 

similar to blast. Out of 112 total proteins in test set, Blast could not find hits for 8 proteins. Vector-G was 

also not able to predict 8 proteins. So the performance of both the methods in alpha test set was same 
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(92.85%).  It was difficult to test non homology based method on this class of proteins. For detailed results 

please see supplementary file: alpha_blast_comparision.xls 

 

Prediction of G Beta Proteins 

Defining the function of a WD-repeat protein is the current challenge (Li and Roberts 2001), since G beta 

subunits have WD-40 repeats. Vector-G was able to predict correctly G beta with high precision and is 

highly useful in improving the annotation of existing WD-40 repeat containing proteins as well as finding 

the new G beta proteins. The top scoring G beta proteins include AGB1 of Arabidopsis thaliana, beta-1, 

beta-2, beta-3, beta-4, beta-5 in Homo sapiens, Cblp in Chlamydomonas, Pigpb1 in Phytopthora, sfaD in 

Aspergillus nidulance, MGB1 in Magnaporthe grisea, gnb1 in Neurospora crassa and Fgb1 in Fusarium 

oxysporium, Gib-2 protein in human fungal pathogen Cryptococcus neoformans. Gib-2 in Cryptococcus, 

Vps15 (Slessareva et.al. 2006), Gpb1 and Gpb2 in S. cerevisiae (Harashima and Heitman 2002) are 

predicted recently showing G beta like function. These proteins are also predicted as G beta like by Vector-

G.  

Despite multiple G alpha subunits functioning in fungi, only single G beta species has been 

identified, suggesting that non-conventional signaling exist in eukaryotic organisms. An interesting 

finding emerging from this analysis is the identification of several new G beta proteins namely, 5 G beta 

in newly sequenced genome of mycorrhizal symbiotic fungus Laccaria bicolor, 1 in Coccidioides immitis, 

1 in Coprinus cinereus, with high nscore value indicating that these proteins could have G beta like 

characteristics. The reason that L. bicolor has high number of G alpha, and G beta proteins, is the nature 

of its habitat. Since, it is a symbiotic fungus that interacts with a large number of plants as well as can live 

as a saprophyte, which suggest that it could have complex signal transduction mechanisms possibly 

involving many G alpha and G beta subunits. The complete list of newly predicted G proteins is listed in 

Supplementary file 1.1, 1.2, 1.3. 

 

Application of vector-G  

 

Although a sample run of Vector-G on a well defined test set of G protein subunits and non- G 

proteins showed high sensitivity and specificity, yet, the test set was small. Therefore, to assess general 

applicability of Vector-G, we examined its prediction power by analyzing well-characterized G protein 

subunits and protein coding regions from 31 genomes from a wide range of organisms including human, 

pathogenic, non-pathogenic and symbiotic organisms having a variety of functions. The results of the well 
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characterized G protein subunits and genome scan results are displayed in Table 2 and Supplementary 

Table 1.1, 1.2, 1.3 respectively. The experimentally characterized G protein subunits from a wide range 

of organisms top the list in whole genome scans in our experiments. Subsequently, we restricted our 

analysis to proteins having nscore greater than 0.5. Several of the predicted G protein subunits are 

supported by complementary evidence such as Prosite pattern search (Gattiker, et. al. 2002) and BLASTP. 

A fraction (~ 30% - 78% depending on the organism) of the top scoring predicted G protein alpha subunits 

by Vector-G also contain P-loop or ATP/GTP-binding site motif. Many of the WD-repeat proteins are 

characterized as G beta like protein. Similarly a fraction of top scoring G gamma proteins contain CAAX 

motif. The CAAX box has been found to be associated with G gamma, Ras, lamins and Rhodopsin kinase 

also. These results taken together support a significant fraction of the G protein subunits predicted by 

Vector-G in a wide range of organisms. In addition, Vector-G guided the improved annotation of a number 

of G proteins by suggesting re-examination of these proteins using available evidences.  

It is clear that the highly studied organisms show a considerable number of G protein subunits but 

in case of lower eukaryotes and plants, a lot more G protein subunits need to be analyzed. This method 

also aided in identifying and analyzing G proteins in new genomes for which not much annotation and 

experimental data is available. Vector-G adopts multi-modular approach which is robust and 

comprehensive. The currently available methods that can be used for G Protein subclass prediction include 

BLAST, WD-repeat prediction (Smith et.al. 1999), gpdb (Elefsinioti et. al., 2004). However, they require 

a characterized homolog whereas Vector-G is a non-homology based method. We have applied our 

prediction method to more than 31 completely sequenced genomes from across the three domains of life. 

Some proteins are predicted with high nscore but did not show any available evidence. These could serve 

as leads for experimental testing especially in organisms where G proteins have not yet been identified or 

functionally characterized.  

Since some false positives are also predicted because of small protein length for some genes in 

whole genome scans, it is judicious to consider length of the protein, long single amino acid repeats and 

available resources for further experimental work to validate these genes. Vector-G makes a valuable 

contribution in the group of computational approaches that use compositional properties for addressing 

biologically interesting issues such as identification of secretory proteins in bacteria (Schneider 1999) and 

apicoplast targeted proteins in the malarial parasite Plasmodium falciparum (Zuegge et.al. 2001). 

Application of Vector-G could rapidly aid in experimental characterization of several proteins with known 

and unknown predicted functional roles in investigating their role in the signal transduction process. Most 
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importantly Vector-G would be an invaluable tool for predicting G proteins from newly sequenced 

genomes where there is very little experimental data or annotation is available. It is also useful in the 

prediction of new classes of G proteins that are not easily identified by standard homology based methods. 

The modular nature of SVM methods developed here can be easily extended to other groups of proteins 

such as kinases, transcription factors etc. 
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Table1. Performance of 3 modules of Vector G on a test set. 

 

Classifiers Tripeptide composition Dipeptide composition Hydrophobicity composition 

Sna Spb Sn Sp Sn Sp 

Alpha Subunit 99.45 99.45 95.05 98.90 39.01 100 

Beta Subunit 95.38 100 93.84 100 72.30 100 

Gamma 

Subunit 
97.6 100 97.6 100 91.2 100 

a Sensitivity  
b Specificity 

 

Table2. Experimentally verified G protein subunits and Vector-G prediction  

 

Organism 
G  Protein 

Subunits 

Associated Function Vector-G 

prediction a 

References 

Homo sapiens 

GNAS1 Pseudohypoparathyroidism, 

McCune–Albright syndrome 

0.93669 Spiegel, A. M. 1996. 

GNB3 Hypertension  0.97627 Suwazono et.al. 2006  

GNG11 regulates cellular senescence 0.938211 Hossain et.al. 2006  

Mus musculus 

G alpha 12 regulate marginal zone B cell 

maturation, migration, and 

polarization 

0.937694 Rieken et.al. 2006  

Gnb5 Prolonged photoresponses and 

defective adaptation in rods 

0.96541 

 

Krispel et.al. 2003  

Gng3 effective immune response 0.938965 Dubeykovskiy et.al. 

2006 

Rattus 

norvegicus 

gustducin  Bitter taste perception 0.935633 Ueda et.al 2003  

G beta 3  0.9838 Ray and Robishaw 

1994 

Gng8 development of olfactory and 

vomeronasal neurons 

0.946735 Ryba and Tirindelli 

2005  

Drosophila 

melanogaster 

G alpha associative learning 0.960986 Ferris et.al 2006  

G beta 13F spindle development 0.97625 Fuse et.al. 2003 

G gamma1 sugar reception 0.936403 Ishimoto et.al. 2005 

Caenorhabditis 

elegans 

goa-1 role in olfactory adaptation 0.948741 Matsuki et.al 2006  

GPB-2 behavioral defects 0.95996 van der Linden et.al 

2001  

Gpc-1 involved in taste adaptation 0.93628 Jansen et.al. 2002  

Neurospora 

crassa 

gna-3 Regulation of conidiation and 

adenylyl cyclase levels 

0.94215 Kays et.al. 2000 11 

gnb-1 Sexual and vegetative 

development and maintenance 

of normal G alpha 

0.97496 

 

Yang et.al 2002 
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GNG-1 Required for Normal Female 

Fertility, Asexual 

Development, and G{alpha} 

Protein Levels 

0.936258 Krystofova and 

Borkovich 2005  

Cryptococcus 

neoformans var. 

neoformans 

GPA1 Regulation of mating and 

virulence 

0.944513 Alspaugh et.al. 1997  

Gib2 cAMP signaling 0.93907 Palmer et.al. 2006  

- - - - 

 
a. nscore value
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Fig1. (c) 

 

 

 

 

Fig 2. 
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Figure 1: Performance of SVM classifier on a test set of G protein subclasses and corresponding nscore. 

The theoretical cut-off based on this SVM algorithm is 0. A test set of 182 alpha, 65 beta, 250 gamma 

subunits and similar number of negative set was taken for each positive set. (a) Scatter plot showing SVM 

output of alpha test set. The shaded squares show predicted value for alpha subunit and open squares show 

predicted value for negative test set. This method can efficiently segregate positive and negative set. Note 

that positive predictions are more concentrated near 1 and negative predictions are near -1. The middle 

zone comes under twilight zone. Two proteins (gi - 41351777, 41351779) from M. musculus, two proteins 

(gi-556256, 1169858) from Leishmania donovani, one protein (gi- 113638666, 3550264 and 68427275) 

each from Oryza sativa, Stentor coeruleusand Danio rerio respectively have nscore less than 0. Proteins 

from L.  donovani, D. rerio and S. coeruleus shows half G alpha domain and 2 proteins of M. musculus 

shows no G alpha domain. In (b) and (c) similar analyses are done for beta and gamma subunits 

respectively. In G beta classification module, three proteins (gi - 1001939 and 33150694, and 33150742) 

from Homo sapiens have nscore less than 0. In G gamma classification module, two proteins (gi- 

66847902 and 70990842) from Aspergillus. fumigatus, one protein (gi – 55957436) from Homo. sapiens, 

one protein (gi- 6321317) from S. cerevisiae, one protein (gi- 52782800) from Yarrowia lipolytica and 

one protein (gi- 28201803) from Schizosaccharomyces pombe showed nscore less than 0.  

 

Fig 2. This figure represents the working of Blast and vector-G. The (-) and (+) represents an example of 

negative and positive set respectively. The X in red represents a query protein. If one cluster of similar 

sequences was removed as shown in Fig 2b, blast will not be able to find a match for protein X. Vector-

G performs classification by constructing an N-dimensional hyperplane that optimally separates the data 

into two categories ( - , + ). Here, upon removing a cluster of proteins SVM may work two ways. After 

training, good SVM will remain there, where it was initially. Bad SVM will try to divide two groups and 

shift the dividing line away from the original one. This way it is not able to predict the query protein X. 

 


