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ABSTRACT 

 

Correctness of concurrent software is usually checked by techniques such as peer code reviews or 

code walkthroughs and testing.  These techniques, however, are subject to human error, and thus, 

do not achieve in-depth verification of correctness. Model checking techniques, which can 

systematically identify and verify every state that a system can enter, are a powerful alternative 

method for verifying concurrent systems. However, the usefulness of model checking is limited 

because the number of states for concurrent models grows exponentially with the number of 

processes in the system. This is often referred to as the “state explosion problem.” Some 

processes are a central part of the software operation and must be included in the model. 

However, we have found that some exponential complexity results due to uncontrolled 

concurrency introduced by the programmer rather than the intrinsic characteristics of the software 

being modeled. We have performed tests on multimedia synchronization to show the effect of 

abstraction as well as uncontrolled concurrency using the Promela/SPIN model checker. We 

begin with a sequential model not expected to have exponential complexity but that results in 

exponential complexity. In this paper, we provide alternative designs and explain how 

uncontrolled concurrency can be removed from the code. 
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1. INTRODUCTION 

The verification of concurrent systems is important since failures in software can have fatal and 

costly results. In particular, asynchronous, multithreaded, and distributed systems require 

synchronization and reliable communication protocols and in these systems, the interaction 

among software/hardware modules should be coordinated to avoid unexpected failures. The 

verification of software and concurrent systems has been widely studied in [1] and [2]. Also, 

verification methods used in different parts of the world have been surveyed [3], [4], and [5]. 

Several verification tools have been developed for verification of systems implemented in popular 

languages like Java [6], [7], and [8]. Some of the verification methods that are employed are code 

inspections/walkthroughs, pair programming, automated static analysis tools, coverage, 

capture/playback, model checking, and development testing tools [1]. We are interested in model 

checking verification since model checking is more rigorous than most other verification 

techniques because it can check all possible states a model can enter. There are usually three steps 

in model checking verification: modeling, programming in the language of a model checker  in 

order to implement a given model, and verification. Since all three steps are likely to be handled 

by a single person, we refer to a programmer as a person who models, implements, and verifies 

the model using a model checker. In this sense, a programmer is able to apply abstraction to the 

model as well as verify the model. 

1.1 State Explosion 

 
 Exponential growth in the number of states that must be checked, usually referred to as 

State Explosion, is mentioned as one of the major bottlenecks when applying model checking to 

software [9]. Because of state explosion, the size of a finite state model must be small [10]. In [9], 

two approaches are proposed to deal with state explosion: abstraction and slicing. Both slicing 

and abstraction are performed based on an input property. In a “slice,” the parts of a program that 
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do not affect the observable features are removed. For data abstraction, the properties of variables 

are minimized. If the reachability of a state from any other state needs to be checked, this type of 

slicing and abstraction may not be useful.  

State explosion may result from the inherent complexity of a model as well as from 

unsophisticated coding by the programmer. State explosion often occurs in complex models.. 

Unfortunately, using current techniques, it is not usually possible to state definitively whether 

there is going to be state explosion or not until the program model is completed and the model 

checker is run on the model. If there is state explosion, it is not clear whether or not to continue 

the model checking process. To the best of our knowledge, although model checkers like Simple 

Promela Interpreter (SPIN) [11] use on-the-fly state generation and partial order reduction to deal 

with state explosion, no research on how to deal with state explosion from the programmer’s 

perspective has been performed. That is, stylistic techniques that the model developer can use to 

reduce the magnitude of the state explosion problem have not been heretofore developed.  

1.2 Uncontrolled Concurrency 

 
In this paper, we examine components of model complexity that are introduced by the 

programmer’s stylistic choices and we suggest how to reduce this additional complexity. If the 

programmer does not remove uncontrolled  concurrency, model checkers are likely to face state 

explosion.  

Uncontrolled concurrency within a model is unintended concurrency by the programmer. 

In other words, if the programmer had been aware of the uncontrolled concurrency, the 

programmer would have attempted to remove it. If a model has uncontrolled concurrency, the 

model checker may face state explosion during verification. Even though a model is correct – 

meaning all properties can be satisfied -- there can still be uncontrolled concurrency. If a model is 

correct but has uncontrolled concurrency, a programmer will unnecessarily simplify the model by 

applying abstraction to perform verification on a larger scale. We show that careless code 
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creation resulting in uncontrolled concurrency can lead to exponential complexity. Reducing the 

complexity on one part of the system enables the programmer to perform more thorough tests on 

other parts of the system. Note that we do not reduce the complexity of the original model. In this 

paper, we try rather to identify the existence of uncontrolled concurrency and then remove it. 

Therefore, we point out that the uncontrolled concurrency needs to be removed before applying 

any simplification to the model.  

1.3 PROMELA/SPIN 

 
This paper examines the Simple Promela Interpreter (SPIN) model checker and Process 

Meta-Language (Promela) in identifying the complexity of verification. We have chosen 

Promela/SPIN as the model checker since SPIN is expected to work well on asynchronous 

software systems, multi-threaded software, and distributed algorithms [11]. The SPIN model 

checker is a tool for verifying distributed software models. It was developed at the Bell Labs 

Computing Sciences Research Center in 1980 and has been available as open source since 1991 

[13]. After its significant contributions to model checking, SPIN was awarded the ACM System 

Software Award in 2001. SPIN thoroughly checks whether a model contains the essential 

elements of a distributed system design [11]. Promela is the specification language used by SPIN 

[11]. Promela is not a programming language but a language for building formal verification 

models. A model is an abstraction and contains correctness properties and other elements that are 

not part of a program’s implementation [11]. The features found in Promela aid in building a 

high-level distributed system model [11]. Programs implemented in traditional programming 

languages such as in C can be mapped to PROMELA, and the SPIN model checker can be 

applied for verification [14].  

This study examines the number of states stored, memory usage and time. A state 

contains a program’s description such as variable values, process counters, etc. [15]. We provide 

examples on how to deal with state explosion from the programmer’s perspective. We perform 
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tests on multimedia synchronization whose purpose is to provide correct in-order delivery of 

streams from a server to a receiver. Multimedia synchronization using model checking has been 

previously studied in [12]. Here, we examine the number of processes, or proctypes in 

Promela/SPIN, as well as the number of states per proctype. The number of states per proctype 

corresponds to the abstraction of the model. For multimedia synchronization, we focus on a 

sequential model that is not expected to have exponential complexity. SPIN keeps track of 

possible model states using state space methods [11]. State space methods construct all states and 

state transitions within a system that can lead to state explosion. Most systems will have a large 

number of states that can grow exponentially [16].  

This paper is organized as follows: Section 2 provides brief information about the 

Promela keywords used in this paper; Section 3 provides different design strategies for 

multimedia presentations with a focus on sequential presentations; Section 4 compares different 

designs and discusses the reasons for exponential complexity; Section 5 discusses the 

experiments and the last section concludes our paper. 

2. BRIEF BACKGROUND on PROMELA 

Proctype is a Promela keyword and is used to declare new process behavior [11]. 

Promela proctypes are either static or active. The keyword “active,” when placed in front of a 

proctype declaration declares and instantiates a process [11]. Static proctypes need to be called 

from a function. 

The syntax of a proctype is 

proctype name ( [decl_lst] ) { sequence }[11] 

where decl_lst is the declaration list and sequence is a block of code enclosed within curly braces 

[11]. 
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 In Promela, there is a reserved proctype called init. This is similar to the main function in 

C/C++ since the init proctype is the default starting proctype and does not need to be initialized. 

All other proctypes can be initialized from the init proctype if they are not active. 

A do loop is a repetitive construct [11]. The do loop syntax is: 

do :: sequence [ :: sequence ] * od 

where there can be one or more sequences written in the do loop [11]. A double colon precedes 

each separate option sequence [11]. 

A Promela do loop begins with the keyword do and ends with the keyword od. Each do 

loop has a condition statement that evaluates to true (1) or false (0) [11]. Promela’s do loop 

operates differently than in a programming language. With Promela, do loop options execute 

randomly, not sequentially. Only one option within a do loop is selected for execution each time 

the do loop is executed. After an option is executed, the do loop continues execution from the 

beginning of the do loop. The do loop is exited only by using a break statement. 

The double colon in front of the condition statements in a do loop makes them guard 

statements [11]. An arrow symbol (->) following a guard statement is equivalent to a semicolon 

in Promela. The code following the arrow symbol is not executed until the guard statement 

evaluates to true. If the guard statements do not evaluate to true, code execution returns to the 

beginning of the do loop.  

3. MULTIMEDIA SYNCHRONIZATION in PROMELA/SPIN 

Two types of multimedia synchronization are usually analyzed: fine-grained 

synchronization and coarse-grained synchronization. Fine-grained-synchronization refers to tight 

synchronization between different streams. Lip synchronization between video and audio is an 

example of fine-grained synchronization. In this paper, we are interested in coarse-grained 

synchronization. Coarse-grained synchronization synchronizes the points at which streams start 

and end. Synchronized Multimedia Integration Language (SMIL) [17] is an XML-based language 
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that enables the specification of coarse-grained synchronization. During a multimedia 

presentation, there could be streams that are played in parallel as well as sequentially. By an event 

mechanism, the streams may be notified when to start.  

In this section, we examine a model that would not be expected to have exponential 

complexity, yet yields exponential complexity. The sequential presentation of multimedia streams 

has linear complexity since each stream starts after the previous stream ends. A stream should 

notify the next stream to start in the sequence. The notification in our models is handled using 

streams’ state variables. In other words, each stream is waiting for a condition to be satisfied. 

We define three general designs to express sequential multimedia presentations in 

Promela: embedded, wake-up, and chain. The embedded design has only one proctype, and all the 

components of the streams are embedded in a single proctype. In the wake-up design, there is one 

proctype per stream, and each proctype is initiated at the same time. However, each proctype is 

idle until the previous proctype in the sequential presentation finishes its execution. In the chain 

design, there is again one proctype per stream and each proctype is initiated by the previous 

proctype in the sequential presentation.  

Figure 1 shows the sequential execution of three streams with guard conditions as a state 

graph. Stream p1 is the first process to be executed. As long as the endstate of p1 is not reached, p1 

is executed. When p1 reaches its endstate, the guard condition for p2 (stateA1==endstate) is 

satisfied and p2 is allowed to start. In the same way, p3 is not allowed to start until p2 reaches the 

endstate.  

3.1 Wake-up Sequential Presentation Design  

 
Figure 2 shows the Promela code for the wake-up sequential presentation design. Each 

proctype pi corresponds to a stream and contains one do loop that increments its state through a 

system variable stateA,i where i represents the ith stream, 1≤i≤n, and n is the number of streams. 

The state variable for each stream is initialized to 0 in the Promela programs. The variable 
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endstate determines the maximum number of states a stream can enter, i.e., the maximum value 

for the number of states of a stream. These states may correspond to frames displayed in a video. 

With the conditional statements in place, i.e., (stateAi == endstate), proctype p1 executes 

first while the rest of the proctypes pi (i>1) remain idle until proctype p1 completes executing. 

Proctype p1 completes executing when variables stateA1 and endstate are of equal value.  

Proctype p2 remains idle until the control structure in p2, (stateA1 == endstate) evaluates to true.  

Accordingly, proctype p3 runs after proctype p2 completes executing, i.e., when (stateA2 == 

endstate) (Figure 2). 

There are two options within each do loop. The first is a guard statement where the state 

variable is checked to see if it is less than the endstate variable. The second option is an else 

statement. The else statement is also a conditional statement. The sequence following the else 

statement is executed if the else statement is the only statement that is executable in the do loop 

[11]. The break statement causes the code execution to go to the end of the do loop [11].  

3.2 Embedded Sequential Presentation Design 

 
The embedded sequential presentation design includes all of the variables used in the 

wake-up sequential presentation design except that the do loops are embedded within one 

proctype, p1. Initialization remains the same. Each of the do loops sequentially increments the 

corresponding state variable. Sample Promela code for three streams is shown in Figure 3. 

3.3 Chain Sequential Presentation Design 

 
The chain sequential presentation design is very similar to the wake-up design. In this 

case, proctype pi is initiated in proctype, p(i-1) (where 2≤i≤n)  prior to the completion of p(i-1). The 

guard statements waiting for the completion of the previous proctype are not needed anymore 

since the previous proctype only initiates just before its completion. Figure 4 shows sample 
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Promela code for the chain design. (Notice the run statements at the end of each proctype). The 

init function only needs to call proctype p1. Sequential functionality remains the same. 

4. UNCONTROLLED CONCURRENCY AND COMPARISON OF DESIGNS 

 In this section, we compare the wake-up, embedded, and chain designs with respect to 

similarities in abstraction and concurrency. Then, we explain uncontrolled concurrency and 

briefly explain how to remove it.  

4.1 Comparison of Designs for Multimedia Synchronization 

 
 The wake-up design is a more realistic abstraction than the chain and embedded designs 

since the streams are waiting for an event to start. In this abstraction, an event is handled through 

state variables and guard statements. The embedded design provides a higher-level abstraction by 

embedding all streams into a single proctype. This drastically reduces the complexity. However, 

one may think that embedded abstraction is not realistic since all streams are expressed by exactly 

one proctype. The third alternative, the chain design, provides one proctype per stream; however, 

it does not initiate a proctype until the previous proctype reaches its conclusion. The chain design 

lies somewhere between the embedded and wake-up designs in terms of abstraction level but is 

closer to the wake-up design. 

 In the embedded design, it is clear that there is no interaction among the streams at all. 

Therefore, the programmer assumes that the interactions among streams are (or will be) handled 

properly and probably focuses on other components of the system verification. It is possible to 

see a kind of interaction among streams in the wake-up design using guard statements. For the 

chain design, it is possible to check whether a proctype is starting another proctype. 
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4.2 Uncontrolled Concurrency and Its Removal 

 
 When a programmer creates a model, the programmer has a general, coarse idea about 

the number of states that could be generated. In some cases, the programmer is certain that the 

model is correct but may use a model checker just to clarify that nothing unexpected happens. 

The model checker may determine critical states that are never estimated. Because of an 

unsophisticated model representation, there are unnecessary states to be checked that greatly 

increase state explosion. By “unnecessary” we mean the programmer is not interested in these 

states and, if the programmer had been aware of them, would try to avoid them. These 

unnecessary states cause uncontrolled concurrency. 

We have run all designs in SPIN’s interactive mode to study how each design is executed 

by SPIN. In interactive mode, SPIN executes the code and whenever it reaches a decision point, it 

asks the programmer which path (or choice) to take. For the embedded and chain designs, SPIN 

never asked the programmer to make a choice since there was exactly one way to execute at all 

times. However, for the wake-up design, SPIN has asked the programmer to make choices. This 

shows that although the presentation is sequential, SPIN found parallel executions and, therefore, 

more than one possible execution path. In the wake-up design, we realized that the proctype pi is 

ready to start just after stateA(i-1) of p(i-1) is incremented and becomes equal to endstate. There are 

three more steps for proctype p(S-1) to terminate: else, break, and termination. These three extra 

steps can be executed while future proctypes are being processed. It is possible that proctype p1 is 

the last proctype to terminate its execution.  

The wake-up design is the most realistic of the three designs. Can the wake-up design be 

improved? To improve it, the uncontrolled concurrency caused by the else statement should be 

removed. The only way to correct this is to ensure that the state of the proctype becomes equal to 

endstate in the last statement of the proctype. We update the proctype as follows (the code for p1 

is given as an example): 
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 proctype P1(){ 

        do 

          :: ( stateA1 < (endstate-1) ) -> 

stateA1++; 

:: else -> break; 

        od; 

                 stateA1++; 

} 

In this example, the loop termination condition is stateA1==(endstate-1) rather than 

stateA1 == endstate. When the loop’s execution is completed, the next proctype cannot start since 

stateA1 is equal to endstate-1. The last statement in the proctype assigns the state variable to 

endstate and the next proctype becomes eligible to take steps. We call this design “wake-up 

design with controlled concurrency (wake-up CC)”. We have tested the wake-up CC design in 

interactive mode and SPIN never asks the programmer for a path choice. 

Note that none of the designs violate any property to be verified. Normally, in this type of 

verification, the programmer is only interested in whether a stream starts after the end of the 

previous stream. In all of the designs, the sequential presentations are obtained as expected. This 

shows that all of the designs are indeed correct. 

5. EXPERIMENTS 

Sample execution of the embedded and wake-up designs is given in the appendix. The examples 

chosen for our experiments are relatively simple. We chose them so the issues related to 

uncontrolled concurrency can be pointed out clearly. 

5.1 The Effect of Abstraction on Streams 
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The state variable for each stream maintains the number of states a stream may enter. For 

example, for a video stream, a state may correspond to the display of a frame (picture). Since 

there are 30 frames per second in a typical video, there are 10,800 frames in one hour of video. 

We may apply abstraction in such a way that when the state variable is increased, one second of 

video is displayed. The abstraction actually indicates the number of frames corresponding to each 

state variable unit in our example.  

To realize the effect of abstraction on the number of states per stream, we have kept the 

number of streams constant. In this set of experiments, the number of streams is set to 3. The 

endstate is initialized to a value of 100 and is incremented by 100 in each consecutive program 

until endstate is equal to 1,000. Endstate was incremented by 100 with each successive file in 

order to obtain the one-minute runtime goal. 

The number of states that are generated by SPIN. Figure 5 displays linear growth for the 

number of states stored for the wake-up, chain, embedded, and wake-up CC presentations for 

three streams. In the embedded design, when the endstate is 100, there are 1,423 states stored. 

When the endstate is 1,000, there are 14,023 states stored. In the wake-up design, when endstate 

is 100, there are 609 states stored in the one-proctype model whereas, when the endstate is 1,000, 

there are 6,009 states stored. In the chain design, when endstate is 100, there are 611 states stored 

whereas, when endstate is 1,000, there are 6,011 states stored. In the wake-up CC design, when 

endstate is 100, there are 608 states stored in the one-proctype model whereas, when endstate is 

1,000, there are 6,008 states stored. 

Memory Usage by SPIN. Figure 6 displays the memory usage for the chain, embedded, 

wake-up, and wake-up CC designs. As the value of endstate increases, memory usage appears to 

increase linearly. Memory usage for the wake-up design is 2.622 MB when the endstate is 100 

and increases to 3.134 MB when the endstate is 1,000. For the embedded design, the memory 

usage is 2.622 MB when the endstate is 100 and 2.827 MB when the endstate is 1,000. For the 

chain and wake-up CC designs, the memory usage is almost the same as in the embedded design. 
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Time. Figure 7 displays the real time used for the embedded, chain, wake-up and wake-

up CC designs. Real time used appears to increase linearly with the endstate.  

5.2 The Effect of Number of Streams 

 
The number of streams corresponds to the number of proctypes in the wake-up, wake-up 

CC, and chain designs, and the number of do loops in the embedded design. For the embedded 

sequential design, when the number of streams in the program is 50, SPIN outputs the message 

that one of 400 states is unreached. If some states have not been reached, the full search of the 

state space has not been completed. To have a fair comparison, we have to make sure that all 

executions do not have any states that have not been reached. To overcome the “unreached state” 

problem, some adjustments are needed either in the program or when compiling and executing 

SPIN output. Making these adjustments would make the comparisons unfair. When 49 proctypes 

are used, the runtime has only reached .032 seconds. Since the experiment could not continue 

without receiving the unreached state message, the SPIN results for streams 4 through 49 have 

been graphed. 

For the chain and wake-up CC designs, the programs are tested until there are 49 

proctypes in the file. At 50 proctypes, the “max search depth too small” error is displayed and 

there is one unreached proctype. Again, to have fair comparisons, the results for the 4-proctype 

through 49-proctype programs are graphed. For the wake-up design, the runtime reaches the one-

minute mark when the number of streams is 15. Since the running time increases, we have not 

done any further experiments for the wake-up design for more than 15 streams. 

States. Figure 8 displays the number of states stored for the wake-up design. When there 

are four proctypes in the program, 3,047 states are stored. The last program in the experiment 

contains 15 proctypes and results in 6,651,700 states stored.  

Figure 9 displays linear growth of the number of states stored for the embedded, chain, 

and wake-up CC designs. When the program contains four streams, there are 811 states stored for 
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the embedded design. The last program in this experiment contains 49 do loops for the embedded 

design and results in 9,901 states stored. When there are four proctypes in the program, 814 states 

are stored for the chain design. The 49-proctype program results in 9,949 states stored. When 

there are four proctypes in the program, 810 states are stored for the chain and wake-up CC 

designs. The 49-proctype program results in 9,900 states stored in both the chain and wake-up CC 

designs. The number of states stored for the chain, embedded, and wake-up CC designs are very 

close to each other. 

Memory Usage. Figure 10 displays the memory usage for the wake-up design. The 

memory usage appears to remain relatively constant until the program instantiates eight 

proctypes, after which the memory usage clearly grows exponentially until 747.582 MB are used 

in the 15-proctype program. Figure 11 displays the memory usage for the embedded, chain, and 

wake-up CC designs. For the embedded, chain, and wake-up CC designs, the memory usage 

pattern contains similar periods of relatively constant memory usage with small increases in 

memory usage. Memory usage is 2.622 MB for the four-proctype program and increases to 5.284 

MB for the 49-proctype program. 

Time. Figure 12 displays real time for the wake-up design. Real time appears to remain 

relatively constant until nine proctypes have been instantiated. Exponential growth in the runtime 

continues for the remainder of the programs until 118.032 seconds is reached with the 15-

proctypes program. Figure 13 displays the real time used for the embedded, chain, and wake-up 

CC designs. Real time used appears to increase at regular intervals. Real time is .005 seconds 

with four proctypes and increases to around .070 seconds with the 49-proctypes program. 

5.3 Analysis of Complexity from Experiments 

 
Table 1 compares the data results for varying endstates for the embedded, wake-up, 

wake-up CC and chain designs. It can be seen from the table that the wake-up model contains 
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more states stored, total actual memory used and longer runtimes than the embedded, chain, and 

wake-up CC designs. 

Table 2 shows the results for the wake-up design for different numbers of streams 

(processes). The wake-up design displays exponential growth in complexity. The number of 

states stored for the 15-proctype program is nearly 2,184 times the number of states stored for the 

four-proctype program. Memory usage escalates from 2.724 Mb in the four-proctype program to 

747.582 Mb in the 15-proctype program. Runtime increases from .011 seconds in the four-

proctype program to 118.032 seconds in the 15-proctype program. 

 

Table 3 displays the sample outputs for the embedded and chain designs for different 

number of stream (processes). The results for the embedded and chain designs are very similar to 

each other. The growth from four to 49 do loops in the proctype remains linear.  

From the given results, it is clear that the runtime complexity of the embedded design is 

O(n) where n is the number of streams. It can also be noted that the runtime complexity for the 

chain and wake-up designs is also almost O(n). It is also clear that the runtime complexity of the 

wake-up design is not linear. The complexity of the runtime slope for the wake-up design can be 

expressed as C(an2 + bn + c) * 2n where C is approximately 1/500, a is 1/24, b is -1/4 and c is 4/3. 

Since the runtime slope increases exponentially, the runtime has exponential complexity. It can 

also be noted that the complexity of number of states and memory usage is also exponential for 

the wake-up model whereas it is linear for the embedded, chain, and wake-up CC designs. 

5.4 Discussion 

 
The experiments on multimedia synchronization are interesting since four different 

designs are provided and tested for multimedia synchronization. From the programmer’s 

perspective, it is clear that the sequential presentation has linear complexity since the states (or 

play) of streams do not interact with each other. However, for the wake-up design, the complexity 
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is exponential and state explosion is experienced. In such cases, the programmer is likely to 

simplify the model rather than remove the uncontrolled concurrency. As mentioned, in the 

original wake-up design, there are some leftover states for the proctype after notifying the next 

stream. Because of these leftover states, the design behaves as if it is a parallel execution of 

streams and causes exponential complexity. When the uncontrolled redundancy is removed, the 

model can be verified as having linear complexity. 

Although increasing the number of proctypes yields exponential complexity, increasing 

the number of states (endstate) per proctype results in linear complexity. This means that there is 

another part of the code that introduces the exponential complexity and indicates the existence of 

uncontrolled concurrency. 

Linear complexity can also be achieved in the embedded and chain designs by applying 

further abstraction. Does the programmer need to apply higher abstraction than before when state 

explosion is likely to happen? The wake-up CC design is almost the same as the wake-up design; 

however, the uncontrolled concurrency is removed. The removal of the uncontrolled concurrency 

reduces the complexity from exponential to linear complexity. The complexity of the wake-up 

CC design is very similar to the embedded and chain designs in terms of the number of states, 

memory usage, and runtime. 

6. CONCLUSION 

In this paper, we examined the complexity of the verification of model checkers by 

examining sequential multimedia synchronization using one of the model checkers, 

Promela/SPIN. The use of proctypes with uncontrolled concurrency is crucial as it affects model 

complexity exponentially. The wake-up, chain, and embedded designs yield the same sequential 

and equivalent models. Each proctype in each design, except the chain design, waits for a state 

variable to equal a variable value before executing. However, the wake-up design causes greater 

complexity. 
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We have shown that unsophisticated specification with uncontrolled concurrency of 

sequential streams causes exponential complexity. Uncontrolled concurrency causes additional 

complexity to the verification of concurrent processes. If the chain and embedded designs are 

used, the program can contain more proctypes to handle other functionality to minimize program 

complexity as much as possible. We have further shown that even the complexity of the wake-up 

design can be reduced significantly if uncontrolled concurrency is removed from the code as in 

the wake-up CC design. 

At this point, we do not have any design guidelines for model checking. In 

general, to avoid state explosion, the programmer need some design guidelines. Before 

reducing the number of processes or states, programmer should focus on removing 

uncontrolled concurrency. Removal of uncontrolled concurrency may help the model 

checker to verify the specification without facing state explosion. In this paper, we have 

shown four types of design for sequential presentations. However, in the future, more 

design strategies need to be developed that could be applicable in various environments. 

The programmer should consider possible uncontrolled concurrency that can be avoided. 

We have also shown that existence of uncontrolled concurrency is not obvious. Since 

most programmers have backgrounds in traditional programming languages, it is hard for 

to see a programmer that a good programming style in a traditional programming 

language may actually cause uncontrolled concurrency for model checking. We 

recommend the following rules of thumb that need to be applied in the given order to deal 

with state explosion:  

1. Apply verification as early as possible to observe the number of resulting states 

since it is easier to remove redundancy when the size of the code is small.  
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2. Check for uncontrolled concurrency (if possible, test several processes (proctypes) 

individually to see if they have any uncontrolled concurrency rather than all proctypes at 

the same time), 

3. Simplify the model 

a. If a model is still complex, apply abstraction on the attributes by reducing 

the possible set of values a state variable may take, and/or 

b. Reduce the number of concurrent processes. 

The relatively simple example described in this paper resulted in extensive uncontrolled 

concurrency. The application of model checking on more complex multimedia presentations can 

be found in our early work [12]. We plan to extend our work by analyzing segments of the code 

that lead to uncontrolled concurrency. This paper did not address the requirements of demanding 

concurrent models. Rather, we concentrated on uncontrolled concurrency in relatively simple 

models. Extending this to demanding concurrent models would be an exciting but challenging 

research topic. 
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APPENDIX 

Table 4 displays sample sequential executions of the wake-up and embedded models.  The 

execution shown is for the four-proctype and the one-proctype (six do loop) programs.  This is an 

output of SPIN for the corresponding Promela code. 

http://cnx.org/content/m12316/latest/
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Table 1 Summary of sequential presentation complexity with varying endstate 

endstate # of States Stored 

Total Actual Memory 

Used (Mb) 

 

Real Time (sec) 

 

Wake-up Chain 

 

Embedded 

Wake-up 

CC Wake-up Chain Embedded 

Wake-up 

CC Wake-up Chain Embedded 

Wake-up 

CC 

100 1423 611 609 608 2.622 2.622 2.622 2.622 0.007 0.005 0.005 0.005 

200 2823 1211 1209 1208 2.724 2.622 2.622 2.622 0.009 0.006 0.006 0.006 

300 4223 1811 1809 1808 2.724 2.622 2.622 2.622 0.011 0.007 0.006 0.007 

400 5623 2411 2409 2408 2.827 2.622 2.622 2.622 0.013 0.007 0.007 0.007 

500 7023 3011 3009 3008 2.827 2.711 2.724 2.724 0.016 0.008 0.007 0.008 

600 8423 3611 3609 3608 2.929 2.724 2.724 2.724 0.017 0.008 0.008 0.008 

700 9823 4211 4209 4208 2.929 2.724 2.724 2.724 0.019 0.009 0.008 0.009 

800 11223 4811 4809 4808 3.032 2.724 2.724 2.724 0.022 0.009 0.009 0.01 

900 12623 5411 5409 5408 3.032 2.724 2.724 2.827 0.024 0.010 0.009 0.01 

1000 14023 6011 6009 6008 3.134 2.827 2.827 2.827 0.026 0.011 0.01 0.011 
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Table 2 Summary of sequential presentation complexity with varying number of 

processes – wake-up design 

# of 

processes 

# of States 

Stored 

Total Actual 

Memory Used 

(Mb) 

Real 

Time 

(sec) 

3 1423 2.622 0.007 

4 3047 2.724 0.011 

5 6295 2.929 0.002 

6 12791 3.339 0.044 

7 25783 4.26 0.104 

8 51767 6.104 0.241 

9 103735 10.404 0.537 

10 207671 19.211 1.268 

11 415543 39.179 2.862 

12 831287 79.012 6.589 

13 1662780 168.817 15.384 

14 3325750 348.632 40.789 

15 6651700 747.582 118.032 
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Table 3 Summary of sequential presentation complexity with varying number of 

processes – the embedded, chain, and wake-up CC designs 

# of 

do 

loops 

 

# of States Stored 

Total Actual 

Memory Used (Mb) 

 

Real Time (sec) 

 

Embedded Chain 

Wake-up 

CC Embedded Chain 

Wake-up 

CC Embedded Chain 

Wake-up 

CC 

5 1013 1017 1012 2.622 2.622 2.622 0.006 0.006 0.005 

10 2023 2032 2022 2.724 2.724 2.724 0.007 0.008 0.008 

15 3033 3047 3032 2.827 2.827 2.929 0.009 0.011 0.012 

20 4043 4062 4042 3.032 3.032 3.134 0.012 0.015 0.017 

25 5053 5077 5052 3.236 3.339 3.441 0.013 0.019 0.024 

30 6063 6092 6062 3.441 3.646 3.648 0.017 0.025 0.032 

35 7073 7107 7072 3.748 3.953 4.260 0.020 0.032 0.042 

40 8083 8122 8082 4.056 4.363 4.670 0.023 0.038 0.053 

45 9093 9137 9092 4.465 4.875 5.284 0.027 0.048 0.064 
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Table 4 Comparison of Sequential Processes 

Wake-up Model Embedded Model 

Starting :init: with pid 0 

  0:    proc  - (:root:) creates proc  0 (:init:) 

Starting P1 with pid 1 

  1:    proc  0 (:init:) creates proc  1 (P1) 

  1:    proc  0 (:init:) line  51 "p4endstate100.txt" (state 5) [(run 

P1())] 

Starting P2 with pid 2 

  2:    proc  0 (:init:) creates proc  2 (P2) 

  2:    proc  0 (:init:) line  51 "p4endstate100.txt" (state 2) [(run 

P2())] 

Starting P3 with pid 3 

  3:    proc  0 (:init:) creates proc  3 (P3) 

  3:    proc  0 (:init:) line  51 "p4endstate100.txt" (state 3) [(run 

P3())] 

Starting P4 with pid 4 

  4:    proc  0 (:init:) creates proc  4 (P4) 

  4:    proc  0 (:init:) line  51 "p4endstate100.txt" (state 4) [(run 

P4())] 

  5:    proc  1 (P1) line   6 "p4endstate100.txt" (state 5)     

[((stateA1<endstate))] 

  6:    proc  1 (P1) line   8 "p4endstate100.txt" (state 2)     

[stateA1 = (stateA1+1)] 

  7:    proc  1 (P1) line  12 "p4endstate100.txt" (state 6)     

[.(goto)] 

  8:    proc  1 (P1) line   6 "p4endstate100.txt" (state 5)     

[((stateA1<endstate))] 

  9:    proc  1 (P1) line   8 "p4endstate100.txt" (state 2)     

[stateA1 = (stateA1+1)] 

 10:    proc  1 (P1) line  12 "p4endstate100.txt" (state 6)     

[.(goto)] 

------------- 

depth-limit (-u10 steps) reached 

#processes: 5 

                stateA1 = 2 

                stateA2 = 0 

                stateA3 = 0 

                stateA4 = 0 

                endstate = 100 

 10:    proc  4 (P4) line  40 "p4endstate100.txt" (state 1) 

 10:    proc  3 (P3) line  29 "p4endstate100.txt" (state 1) 

 10:    proc  2 (P2) line  17 "p4endstate100.txt" (state 1) 

 10:    proc  1 (P1) line   6 "p4endstate100.txt" (state 5) 

 10:    proc  0 (:init:) line  53 "p4endstate100.txt" (state 6) 

<valid end state> 

5 processes created 

Starting :init: with pid 0 

  0:    proc  - (:root:) creates proc  0 (:init:) 

Starting P1 with pid 1 

  1:    proc  0 (:init:) creates proc  1 (P1) 

  1:    proc  0 (:init:) line  53 "1p6do.txt" (state 1) [(run 

P1())] 

  2:    proc  1 (P1) line   7 "1p6do.txt" (state 5)     

[((stateA1<endstate))] 

  3:    proc  1 (P1) line   9 "1p6do.txt" (state 2)     [stateA1 

= (stateA1+1)] 

  4:    proc  1 (P1) line  13 "1p6do.txt" (state 6)     [.(goto)] 

  5:    proc  1 (P1) line   7 "1p6do.txt" (state 5)     

[((stateA1<endstate))] 

  6:    proc  1 (P1) line   9 "1p6do.txt" (state 2)     [stateA1 

= (stateA1+1)] 

  7:    proc  1 (P1) line  13 "1p6do.txt" (state 6)     [.(goto)] 

  8:    proc  1 (P1) line   7 "1p6do.txt" (state 5)     

[((stateA1<endstate))] 

  9:    proc  1 (P1) line   9 "1p6do.txt" (state 2)     [stateA1 

= (stateA1+1)] 

 10:    proc  1 (P1) line  13 "1p6do.txt" (state 6)     

[.(goto)] 

------------- 

depth-limit (-u10 steps) reached 

#processes: 2 

                stateA1 = 3 

                stateA2 = 0 

                stateA3 = 0 

                stateA4 = 0 

                stateA5 = 0 

                stateA6 = 0 

                endstate = 100 

 10:    proc  1 (P1) line   7 "1p6do.txt" (state 5) 

 10:    proc  0 (:init:) line  55 "1p6do.txt" (state 2) <valid 

end state> 

2 processes created 
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Figure 2 Sample Promela code for the wake-up design having three streams 

p1 p2 p3 

stateA1 < endstate stateA2 < endstate stateA3 < endstate 

stateA1 == endstate stateA2 == endstate 

Figure 1 State Diagram for Do Loop Program Code Using Three Streams  
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Figure 3 Sample Promela code for the embedded design having three streams 
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Figure 4 Sample Promela code for the chain design having 15 streams 
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 Figure 5 States stored (three streams) 
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Figure 6 Memory usage (Mb) (three streams) 
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Figure 7 Real Time (sec) – all designs (three streams) 
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Figure 8 States stored – the wake-up design. 
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Figure 9 States stored – the chain, embedded, and wake-up CC designs. 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

4 5 6 7 8 9 10 11 12 13 14 15

# of proctypes

S
ta

te
s
 S

to
re

d



 

 

31 

31 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Memory usage (Mb) – the wake-up design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 Memory usage (Mb) – the chain, embedded, and wake-up CC designs. 

0

100

200

300

400

500

600

700

800

4 5 6 7 8 9 10 11 12 13 14 15

# of proctypes

T
o

ta
l 
A

c
tu

a
l 

M
e
m

o
ry

 U
s
a
g

e
 (

M
b

)

0

1

2

3

4

5

6

4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

# of streams

T
o

ta
l 

A
c
tu

a
l 

M
e
m

o
ry

 U
s
a
g

e
 (

M
b

)

Embedded Chain Wake-up CC



 

 

32 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Real time (sec) – the wake-up design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Real time (sec) – the chain, embedded, and wake-up CC designs. 
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