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Abstract—With the proliferation of Internet of Things (IoT)
devices such as smartphones, sensors, cameras, and RFIDs, it
is possible to collect massive amount of data for localization
and tracking of people within commercial buildings. Enabled
by such occupancy monitoring capabilities, there are extensive
opportunities for improving the energy consumption of buildings
via smart HVAC control. In this respect, the major challenges we
envision are 1) to achieve occupancy monitoring in a minimally
intrusive way, e.g., using the existing infrastructure in the
buildings and not requiring installation of any apps in the users’
smart devices, and 2) to develop effective data fusion techniques
for improving occupancy monitoring accuracy using a multitude
of sources. This paper surveys the existing works on occupancy
monitoring and multi-modal data fusion techniques for smart
commercial buildings. The goal is to lay down a framework for
future research to exploit the spatio-temporal data obtained from
one or more of various IoT devices such as temperature sensors,
surveillance cameras, and RFID tags that may be already in use
in the buildings. A comparative analysis of existing approaches
and future predictions for research challenges are also provided.

Index Terms—Big data, data fusion, data mining, energy
efficiency, hidden Markov model (HMM), HVAC, localization,
Markov chain, occupancy monitoring, positioning, position esti-
mation, WLAN, WiFi, wireless location estimation.

I. INTRODUCTION

Smart buildings are becoming a reality with the integra-

tion of Building Management Systems (BMS) [1] with an

underlying monitoring and communication infrastructure that

consists of smart devices such as sensors, cameras, RFIDs,

meters, and actuators. These smart devices, along with the

communication infrastructure, are referred to as Internet of

Things (IoT). The BMS manage various crucial components of

the buildings such as heating, ventilating, and air conditioning

(HVAC), gas, lighting, security system, and fire system, and

it can communicate with the IoT devices.

With the availability of IoTs in commercial buildings, build-

ing occupants and environment can be monitored in real time.

In this way, we can have real-time access to occupancy counts

in different zones of the building and even locate most of

the users carrying a wireless device. This real-time occupancy

status information can be used in a variety of applications

controlled by the BMS. For example, the smart building

systems of the future can adjust their energy consumption by

intelligently controlling the HVAC, and respond promptly to

any potential issues that can put the building off its track to

carbon neutrality [2], [3]. In addition to energy issues, real-

time occupancy tracking may also help rescuing survivors in

case of emergency response applications [4]. The security or

fire system can benefit from this information through the BMS.

Finally, this information may also be used to improve building

surveillance and security, and help in better deploying the

wireless communication infrastructure for fulfilling ubiquitous

throughput guarantees throughout the buildings.

Due to such advantages of occupancy detection/monitoring,

many approaches have been proposed in the literature by

considering the use of different devices, assumptions, and

goals. These approaches have certain drawbacks with respect

to accuracy, cost, intrusiveness, and privacy. Accuracy, cost

and intrusiveness are inter-related in the sense that with the

increased cost, you can deploy additional devices (such as

various sensors, RFIDS, cameras) and increase the accuracy of

the system while at the same time increase the intrusiveness.

Therefore, a wise method to reduce costs is to rely on the

existing infrastructure as much as possible. This automatically

addresses the intrusiveness issue since there will be no need

to deploy additional devices inside the rooms, and additional

applications on the users’ devices. Nonetheless, this raises the

question of accuracy which may be severely affected.

This paper provides an analysis of the existing approaches

and help address the aforementioned issue by promoting the

use of multi-modal data fusion that will be collected from

the existing IoT network. A data fusion process could im-

prove the accuracy of occupancy detection while maintaining

a low intrusiveness. By exploiting the synergy among the

available data, information fusion techniques can filter noisy

measurements coming from IoT devices, and make predictions

and inferences about occupancy status. Specifically, we first

analyze the variations of the problem and the available IoT

devices and then survey the existing works with respect to

these assumptions. We analyze their abilities to address the

issues of accuracy, cost, intrusiveness and privacy. We finally

consider data fusion approaches and investigate how these

techniques can be exploited to come up with more advanced

occupancy monitoring techniques that can significantly reduce

the energy consumption of the building HVAC systems.

The paper is organized as follows. In the next section,
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we define the variation of occupancy problems and describe

the available IoT devices along with the classification of ap-

proaches in the literature. The following sections are dedicated

to each of these classes. Finally we provide a list of future

challenges and conclude the paper.

II. PROBLEM DEFINITIONS AND CLASSIFICATIONS
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Fig. 1: Occupancy monitoring
problems.

There are a number of vari-

ations when we refer to Oc-
cupancy Monitoring problem.

These are interrelated but de-

pending on the goal of the

application, in the past, vari-

ous forms of the problem are

studied. We show them in the

form of subset/superset rela-

tionships in Fig. 1.

• Occupancy Detection: This problem studies whether a

space is occupied or not at a given time. This is typically in the

form of binary answers which does not tell how many people

exists if the space is occupied. The spaces considered here are

typically offices or private spaces. Occupancy detection of the

public spaces (e.g., meeting rooms, aisles, cafeterias), on the

other hand, is more challenging. Typically, these public spaces

can either be monitored via other means (e.g., cameras) or by

default considered occupied for HVAC applications.

• Occupancy Counting: The goal of this problem is to

determine the total number of people in a building at a given

time. There are two versions of this problem: First, counting

all the people in the whole building. Second, counting people

based on some predefined zones. The zones can be defined,

for example, using HVAC zones, offices, or WiFi access point

(AP) coverage areas. The granularity of the zones differ in

most of the studies.

• Occupancy Tracking: This problem can be considered as

the superset of the all of the above problems. It not only detects

people, but also counts, locates, and tracks them. The solutions

to this problem can utilize the well-known user localization

algorithms that run on the network side rather than the user

devices.

• Occupancy Event/Behavior Recognition: This problem is

mostly related with the activities of the users once they are

detected at certain locations. The activities can be individual

or collective. Through occupancy event/behavior recognition,

the behavior analysis of the individuals can be done and used

for intelligent HVAC control.

When investigating these problems, researchers relied on

several network and IoT devices. These can also be classified

into the following categories in order to assess the cost and

intrusiveness of the approaches [5].

• Tier-1: Approaches which rely on the existing WiFi in-

frastructure without any addition of hardware or software.

• Tier-2: Approaches which additionally require new soft-

ware to be installed on APs or client devices.

• Tier-3: Approaches which requires new

hardware/software deployment. This category can

either aggregate several IoT devices or use one of the

other IoTs such as sensors or cameras.

In this paper, we survey the existing occupancy monitoring

approaches based on the tiers above. Specifically, Tier-1 and

Tier-2 are considered under WiFi-based occupancy monitor-

ing. Tier-3 can be divided into several classes, where we will

survey sensor-based and camera-based occupancy monitoring

techniques in this paper. The approaches that fused data from

several IoTs will also be reviewed under data fusion based

occupancy monitoring techniques.

III. WIFI-BASED OCCUPANCY MONITORING

Most of the early building HVAC actuation systems are

based on the occupancy data collected from sensors and

cameras, which are deployed specifically for HVAC systems.

Obviously, there is a major cost associated with the hardware,

and the design, setup and maintenance of the data collection

network. In this regard, Erickson et al. [6] report an expense

of $147 K for just the hardware for a three floor building, and

wireless motion sensors are estimated to cost over $120 K

for a five floor building testbed. In addition to hardware cost,

the inconvenience of deployment and the maintenance issues

make it unattractive for commercial building owners to invest

on the deployment of smart technologies for energy-efficiency

purposes. Therefore, there is a research trend recently towards

the use of existing communication infrastructure, such as the

widely available WiFi AP infrastructure in buildings.

WiFi APs have been used extensively for indoor localization

in the past [7]–[10]. These works, however, focus on individual

user localization, assuming that an individual carries a wireless

device and in most cases an app on the user’s device is needed.

Nevertheless, some of these works can still be leveraged

in occupancy monitoring. For instance, fingerprinting-based

training schemes can be employed to localize people when the

RSSI values of these users can be obtained from the APs or

log files. As an example, the approach in [11] proposes using

RSSI values extracted from APs to locate people and hence the

occupancy. The idea is to install a packet analyzer at each AP

and capture each incoming packet via tcpdump. The packets

are forwarded to a central computer via SSH connection to

extract MAC addresses and the corresponding RSSI values.

The authors use a coarse-grained localization (i.e., based on

zones) which is inspired from the idea of passive localization

of rogue access points [12].

Another recent work that focuses on coarse-grained local-

ization is reported in [13]. The authors solely utilize WiFi APs

along with the users’ smartphones to build a system in the

Department of Computer Science at UC San Diego. The basic

source of user information is the Authentication, Authorization

and Accounting (AAA) WiFi logs which is augmented with

metadata information such as occupant identity, WiFi MAC

address and AP location within the building to improve the

accuracy of occupancy detection further. The authors show



that the proposed system can be easily integrated with building

HVAC system and can actuate it effectively. Based on the

experiments conducted for 10 days on 116 occupants, the

authors show that the proposed approach infers occupancy

correctly for 86% of the time, with only 6.2% false negative

occupancy detections in personal spaces. The inaccuracies

are mostly attributed to aggressive power management by

smartphones which stops their WiFi connections temporarily.

The authors report savings of 17.8% in the HVAC electrical

energy consumption through this technique.

There are other works that somewhat utilizes WiFi but

complements it with other information. Ghai et al. [14] use

a combination of WiFi signals, calendar schedules, personal

computer activity and instant-messaging client status to infer

the occupancy within cubicles with an accuracy of up to

91%. However, the algorithms have been evaluated for just

5 volunteers, and do not evaluate scalability. Similarly, the

work in [15] complements data from APs with sensors and

cloud-based calendars to estimate the occupancy in buildings

to be used in emergency response. The WiFi-based approach

uses an intrusion detection tool, namely SNORT, to analyze

HTTP traffic and identify mobile devices that are connected.

Once the MAC address of a device is identified, the AP it

is connected to is used to get the zone of the mobile device.

This information is then used along with sensors and room

schedules to come up with an estimate of the occupancy in

the building. The work in [5] used the WiFi users’ DHCP

leases to infer the occupancy information. Additionally the

authors looked at other options such as PC Monitor software,

PIR sensors etc. The results indicated that PIR sensors that

are attached to computer monitors provide the best accuracy.

DHCP approach had issues since a user may get connected to

different APs when walking in different locations which may

not necessarily indicate its actual zone. We note that none

of these approaches measure energy-efficiency improvement

since their focus is just the improvement of the accuracy of

occupancy monitoring.

IV. CAMERA-BASED MONITORING

Camera-based people counting research can be classified

into three: a) count the number of people by extracting features

that would describe body parts of a person, b) track moving

regions/pixels and cluster pixels based on their trajectories to

yield one cluster per person, and c) extract features and use

them to estimate the number of people directly by regression

[16]. Counting people directly may be challenging due to

partial/complete object occlusion [17] and difficulty to locate

and analyze the window(s) having a person (or people) [17].

Tracking moving trajectories may help to overcome the occlu-

sion problem, but it has to deal with the complexity of different

motion paths observed by different parts of a moving body and

intersecting paths of multiple people [17]. Regression methods

may help to count directly but they do not provide information

about where people actually are. Regression methods may not

help fusion of data from multiple sensors directly since they

only yield the count.

The body parts that are usually used for counting people

are face [18], head [19], head-shoulder [20], upper-body, and

skeleton [21]. An important number of algorithms rely on

motion information (assumes that people should move for

counting). However, there are also indoor or outdoor environ-

ments where people may have little to no motion. Examples

include people waiting at long lines at airports [22] or students

studying at a desk in a library. In such cases, approaches

relying on motion would not yield desirable outcomes for

people counting.

A study that purely utilizes a camera sensor network on the

ceilings of offices is reported in [6], [23]. The cameras use

lightweight algorithms in order to do background extraction

and object recognition before the data is sent to a data server.

The occupancy model considers inter-room relationships over

time, which are captured through real-world data. In particular,

the multi-variate Gaussian probability density function for the

occupancy vector Oh = [r1, ..., rm] at an hour h is defined as

p(Oh;μh,Σh) =
1

(2π)n/2|Σ|1/2
× exp

{1

2
(Oh − μh)

′Σ−1
h (Oh − μh)

}
, (1)

where 1 ≤ h ≤ 24 is the hour in a day, ri is a vector of

occupancy for room i (1 ≤ i ≤ m) (captured every second

within the hour h), μh = (μ1, ..., μm) is a vector that includes

the average occupancy counts in each room during hour h, and

Σh is the covariance matrix obtained from Oh. For a given

occupancy realization, using (1), it is possible to calculate the

probability of an occupancy pattern in different rooms in the

future.
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Fig. 2: Markov chain building occupancy model, with states rep-
resented by a sequence that holds the number of users in different
zones.

The multi-variate Gaussian model (MVGM) in (1), while

takes into account temporal and inter-room correlations, does



not account for previous user behavior, nor does it capture the

information about the rarely used zones. In order to address

these shortcomings, [23] further introduces a Markov Chain

model. In particular, the states of the Markov chain are the

occupancy at each zone ([s1, ..., sm] for m zones), where the

transition from one state to a different state depends only on 1)

the current state, and 2) time (see Fig. 2). With L denoting the

largest number of occupancy count in a zone, then, there may

be a total of Lm states in the Markov chain, with many of the

transition probabilities being equal to zero due to infeasibility

to move between certain zones. The transition probabilities

are captured through training data. Two variations are also

discussed in [23] for more effective operation: closest distance

Markov chain and blended Markov chain.

V. SENSOR-NETWORK BASED OCCUPANCY MONITORING

Most of the initial works in occupancy monitoring consid-

ered deploying special sensors within the building in order

to detect presence. While sensors are typically used to com-

plement the other approaches, there were some works which

solely used sensors. For instance, Dodier et al. [24] proposed

a Bayesian belief network comprising of three PIR sensors

and a telephone sensor to probabilistically infer occupancy.

Occupied state of individual offices/rooms was modeled with

a Markov chain. Their system had a detection accuracy of

76%, but was unable to count the number of occupants.

In [25], [26], three machine learning techniques are used

to process the data from a sensor network, which collects

the feature information about the CO2, lighting, temperature,

humidity, motion, and acoustic signals in the environment. In

particular, support vector machine, neural network, and hidden

Markov model (HMM) are used to obtain occupancy informa-

tion from the estimated features. Experimental results show

that the HMMs model the number of occupants in a zone more

realistically, as 1) it can discount sudden short changes in the

occupancy level, and 2) it can maintain a constant occupancy

level during static periods. In another related work [27], [28],

features extracted from acoustic, lighting, motion, and CO2

sensors are used to capture occupancy patterns using hidden

semi-Markov models. Experiments conducted in a one-week

interval show that the proposed approach yields 92% accuracy

in estimating the number of occupants in a room which can

accommodate up to 7 people.

VI. DATA FUSION FOR OCCUPANCY TRACKING

Indoor occupancy tracking accuracy can be improved sig-

nificantly by using data fusion techniques to simultaneously

utilize the information collected at different types of sensors,

such as cameras, radio receivers, and occupancy detection

sensors (CO2, PIR, etc.). In this section, data fusion tech-

niques recently introduced in the literature in the context of

occupancy monitoring will be briefly summarized.

A data fusion based occupancy monitoring technique that

uses information from a variety of sensors is introduced

in [29]. Each collection of sensor devices is integrated into

an Arduino microcontroller with WiFi support, and they are

mounted close to entrance door in a room at a height of 1.5 m.

For data fusion, a radial basis function (RBF) neural network

is used at an Arduino device, which takes multiple sensory

information as inputs, and outputs an occupancy count in a

room, in the form of a number between 0− 10. The sensory

inputs can be instant variables (e.g., lighting, sound, CO2 con-

centration, temperature), count variables (e.g., motion count

over the last minute), and average variables (sound average

over 5 seconds and 5 minutes). Based on the data collected

with one minute sampling rate over 20 consecutive days in two

laboratory rooms, up to 88% occupancy monitoring accuracy

is reported in [29].

In another related work, data fusion technique that relies

on an adaptive neural-fuzzy inference system (ANFIS) is

presented in [30]. The authors use the data collected from

humidity, illuminance and temperature sensors (all of which

are logged every five minutes), as well as the data from CO2

and volatile organic compound (VOC) sensors (both logged

every two minutes) to estimate the occupancy pattern using the

ANFIS approach. Based on the measurement data, a significant

correlation has been reported between the occupancy pattern

and the building energy consumption. Therefore, along with

the other sensory data, building energy consumption data is

also used in the ANFIS data fusion technique for occupancy

monitoring.

Meyn et al. [31] improved occupancy detection accuracy

by using a sensor network comprising CO2 sensors, digital

video cameras, and PIR detectors, as well as historic building

utilization data for occupancy estimation at the building level.

The system used a receding-horizon convex optimization al-

gorithm to infer occupancy numbers which is an extension of

Kalman filter. Their system detection accuracy reached 89%.

However, it was not able to estimate occupancy numbers at

the room level.

A technique for fusing the information from Bluetooth

and WiFi technologies for improved indoor localization is

proposed in [32]. Using Bluetooth measurements, the zone

where the desired user is located is identified. Subsequently,

the fingerprint based WiFi localization technique is applied

to find the user’s location considering only the fingerprints

within the given zone. Reported results in [32] show that an

average localization accuracy of 2.32 m can be obtained when

both are used simultaneously, compared to 2.69 m localization

error when only WiFi is used for localization.

A client-side data fusion technique for combining informa-

tion from wireless LAN access points and a camera vision

system available at the client is introduced in [33]. Initially,

a database of feature points corresponding to camera image

sequences obtained at different locations in a building is

generated. During real-time localization, first, a tentative client

location is estimated by using the received wireless LAN

signals and a sparse Bayesian learning technique. This location

is then used to search the natural feature points in the image

database to improve the localization accuracy. In [34], the



signals from 2.4 GHz and 5 GHz WiFi APs are combined

at the client side for a more accurate localization through

particle filters. Furthermore, data fusion with accelerometer

and gyroscope are used to enhance the position estimates.

A comprehensive survey on information fusion techniques

in general for wireless sensor networks is presented in [35],

which studies: 1) multi-sensor inference techniques including

Bayesian inference, Dempster-Shafer inference, fuzzy logic,

neural networks, abductive reasoning, and semantic informa-

tion fusion; 2) multi-sensor estimation techniques including

maximum likelihood (ML), maximum a posteriori (MAP), and

least squares (LS) estimation, moving average filter, Kalman

filter, and particle filter; and 3) multi-sensor feature map

techniques involving occupancy grids and network scans.

VII. COMPARATIVE ANALYSIS AND FUTURE PREDICTIONS

Table I summarizes the existing occupancy monitoring

approaches in terms of the used infrastructure and techniques

applied. The table indicates that most of the existing works

relied heavily on sensor’s which need to be specially deployed.

While different techniques are used based on artificial intelli-

gence, machine learning and statistics, multi-modal data fusion

was not applied in most of the works. Combination of WiFi,

sensors, cameras and other resources at the same time was not

investigated at all. The analysis of these helps us to determine

a number of future trends in the area of smart buildings:

• Exploiting IoT within the Buildings: With the proliferation

of IoT devices and technologies, there is a great potential

to exploit their communications for occupancy monitor-

ing. In addition to smart phones, the upcoming years will

witness the use of wearable sensors, glasses, watches and

RFIDs on objects. If one can collect the signals emitting

from these devices, they can help increase the accuracy

of occupancy monitoring significantly.

• Using Existing WiFi Infrastructure: There is a grown

interest on infrastructure-based occupancy monitoring for

zero costs and intrusiveness. Typically, the goal is to only

rely on the WiFi and user’s wireless devices to get zone

level occupancy information and then complement this

information with other IoT devices, if any, in order to

further increase the granularity of occupancy information.

• Using Localization: While zone-based coating of people

provides a coarse-grained occupancy detection, the exact

number and location of the people are still needed for

especially shared spaces in the buildings. Indoor local-

ization has the potential to reduce the zone of detection

enough for occupancy inference in shared spaces [13].

Thus, there is a need to integrate localization with the

existing monitoring systems to significantly increase the

energy gains.

• Multi-modal Data Fusion: In order to increase the ac-

curacy and reduce the costs, fusing data coming from

multiple sources within the building is another important

trend. As mentioned, with the maturing of IoT technolo-

gies, there will be additional sources that can provide

additional data for fusion. The techniques in [35] can be

adapted for various buildings with different IoT devices.

• Privacy Preservation: While most of the occupancy

monitoring approaches focus on the people count and

do not track the individuals, accurate occupant tracking

may pose challenges regarding privacy. The existing

techniques for user localization privacy are mostly based

on the mechanisms applied at client side. New privacy

mechanisms are needed to be applied to occupancy

tracking.

VIII. CONCLUSION

In this paper, we surveyed and analyzed the existing efforts

for occupancy monitoring in smart buildings for energy-

efficiency purposes. Specifically, we first identified the prob-

lem types that are related to people occupancy. We also

discussed the past research that solely focused on using sensors

and cameras. Finally, we investigated the current efforts where

IoT comes into picture with the involvement of smart phones,

motion sensors and WiFi APs. The existing approaches in-

dicated a trend towards the use of existing IoTs that are

available within the buildings. With the goal of using minimal

hardware and software costs, future smart buildings have a

great potential to save energy by employing smart control

strategies on HVAC through the help of data collected via IoT.

We concluded the paper by identifying major future trends in

this emerging area.
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