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Abstract—In this paper, we investigate the performance of
two wrapper methods for semi-supervised learning algorithms
for classification of protein crystallization images with limited
labeled images. Firstly, we evaluate the performance of semi-
supervised approach using self-training with naive Bayesian
(NB) and sequential minimum optimization (SMQO) as the base
classifiers. The confidence values returned by these classifiers
are used to select high confident predictions to be used for self-
training. Secondly, we analyze the performance of Yet Another
Two Stage Idea (YATSI) semi-supervised learning using NB,
SMO, multilayer perceptron (MLP), J48 and random forest
(RF) classifiers. These results are compared with the basic
supervised learning using the same training sets. We perform our
experiments on a dataset consisting of 2250 protein crystallization
images for different proportions of training and test data. Our
results indicate that NB and SMO using both self-training
and YATSI semi-supervised approaches improve accuracies with
respect to supervised learning. On the other hand, MLP, J48
and RF perform better using basic supervised learning. Overall,
random forest classifier yields the best accuracy with supervised
learning for our dataset.

I. INTRODUCTION

In supervised learning, labeled data are used to train a
prediction model. In general, supervised learning algorithms
perform well only when there is sufficiently large number
of training data. For cases where the proportion of labeled
data instances is small compared to the unlabeled instances,
researchers have proposed semi-supervised learning. Semi-
supervised learning targets the common situation where the
labeled data is very low and the objective of this technique is
to use the unlabeled data to create better learning models.

The situation of having limited labeled data suits very
well to the protein crystallization image classification problem.
High throughput methods have been developed in recent years
trying to identify the best conditions to crystallize proteins
[1]. The images are scanned periodically to determine the
state change or the possibility of forming crystals. With large
number of images being captured, it is necessary to have a
reliable classification system to distinguish the crystallization
states each image belongs to. It is very tedious to manually
label the protein images by an expert since the protein crystal
growth rarely happens. We would like to analyze how much the
classification accuracy can be improved by using the limited
labeled data and then processing the unlabeled data using
trained models.

Several research studies have been described in the liter-
ature for protein crystallization classification problem using
a variety of classification algorithms such as support vector
machines (SVMs), decision trees, neural networks, boosting,
and random forest [2]. Alternatively, combination of multiple
classifiers has also been studied in the literature [3]. Nev-
ertheless, the reported accuracy has not been very reliable,
and therefore the classification of crystallization images still
remains an important problem. To improve the performance of
the classifiers, there has been a trend to increase the size of
training data. Cumba et al. built their model based on 165,351
hand-scored images and used random forest for classification
[4]. Likewise, Po and Laine used a neural network classifier
on a training dataset consisting 79,632 images [5]. Being able
to create reliable classifiers using limited labeled data can save
a lot of time and effort for expert labeling.

Various semi-supervised techniques have been proposed in
the literature. Broadly, there are two types of semi-supervised
classification techniques. First, there are generic or wrapper-
based techniques which are formulated on top of some su-
pervised techniques. The wrapper-based techniques allow the
possibility of using several supervised classification techniques
as the base classifier. Self-training is one of the simplest semi-
supervised technique where a learner keeps on labeling unla-
beled examples and retrain itself on an increased training set.
Yet Another Two Stage Idea (YATSI) introduced by Driessens
et al. is another wrapper based semi-supervised learning [6].
The second group of semi-supervised classification techniques
are the non-generic semi-supervised learning techniques aim-
ing to improve the learning models by taking advantage of
the unlabeled data. Examples of non-generic ones include
transductive support vector machine (TSVM), semisupervised
SVM (S3VM) and their variants, Laplacian SVM, etc. [7].

Semi-supervised techniques have been applied and eval-
vated for various applications such as software fault detec-
tion [8], text classification [9], spam email detection [10],
quantitative structure-activity modeling [11], etc. There have
been conflicting views about the usability of semi-supervised
learning techniques. While some studies have shown this
technique to be promising, other studies have shown that
the use of unlabeled data does not necessarily improve the
performance of the classifier [8], [7]. We try to investigate
this scenario for protein crystallization image classification
problem.

This study investigates the performance of supervised
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versus semi-supervised algorithms for the protein image clas-
sification problem with limited labeled data. Firstly, we use
sequential minimal optimization (SMO) and naive Bayesian
(NB) to evaluate semi-supervised learning using self-training.
Secondly, we evaluate the performance of 5 supervised clas-
sification techniques NB, J48, multilayer perceptron neural
network (MLP), SMO and random forest (RF)). We use
these classification techniques with YATSI to evaluate the
performance of semi-supervised learning. We perform our
experiments for different proportions of training and test data
on a dataset consisting 2250 images with 67% non-crystals,
18% likely leads and 15% crystals.

This paper is arranged as follows. The following section
presents background on semi-supervised learning algorithms.
Section 3 describes the image categories for protein crystalliza-
tion image classification. Section 4 provides the features used
for the classification. Experimental results and discussion are
provided in Section 5. The last section concludes the paper
with future work.

II. SEMI-SUPERVISED LEARNING

In supervised learning, the objective is to derive a predic-
tion model or classification function for the unseen (unlabeled)
data. The prediction model is developed on the basis of
training data (labeled data) only. Semi-supervised learning
aims in combining the labeled data and unlabeled data to create
better learners. The general assumption in these algorithms is
that data points in a high density region are likely to have
same classes and the decision boundary lies in low density
regions [12], [7]. The idea is to use labeled data to generate
initial training model and determine initial predictions (pre-
labels) for the test data. If the labeled and pre-labeled data
is combined and retrained, the initial decision boundary can
shift which will hopefully improve the performance. Various
semi-supervised learning methods have been proposed and
shown to be promising [13]. In this study, we investigate the
classification performances using two wrapper based semi-
supervised learning techniques - self-training and YATSI.

A. Self-training

Self-training is a semi-supervised learning algorithm in
which a learner keeps on labeling unlabeled examples and
retrains itself on an enlarged labeled training set [14]. This is
a generic technique and any supervised technique can be used
as the base classifier. One problem with self-training is that the
performance is degraded when mistakes reinforce themselves.
There are some variants of self-training that try to reduce the
number of wrongly predicted instances while re-training. One
method uses only high confident predictions from the initial
prediction model for retraining. For this method, the classifi-
cation algorithm is required to generate a confidence value or
a probability estimate for the prediction. This confidence value
can be used to filter additional pre-labeled data for re-training.

B. YATSI (Yet Another Semi-supervised Idea)

Yet Another Two Stage Idea (YATSI) [6] is a semi-
supervised classification algorithm consisting two stages. It is
built on top of any supervised classification algorithm and a
nearest neighborhood algorithm. In the first stage, prediction

model is generated on training set using a supervised classifier
and the predictions for unlabeled instances are determined.
After the predictions, these previously unlabeled instances are
called pre-labeled instances. In the second stage, the nearest
neighborhood algorithm is applied using the initial training
instances and the pre-labeled instances to determine the actual
predictions for unlabeled instances. Besides the initial clas-
sification algorithm, the nearest neighborhood algorithm and
weight factor corresponding to the trust of correctness for the
pre-labeled dataset can be adjusted.

III. IMAGE CATEGORIES

In this study, we consider three image categories for protein
crystallization images. Description of each of these categories
is provided next.

Non-crystals - This category consists of images under the
following protein crystallization phases: clear drop (initial state
of the crystallization process), phase separation, and regular
precipitates. This category indicates that these images do not
have crystals. Fig. 1 [a-c] show some sample images under
this category.

Likely leads - This category consists of images correspond-
ing to likely lead conditions, and hence, can be a good starting
point for optimizing the crystallization conditions. Birefringent
precipitate or microcrystals fall under this category. It also
includes images with high intensity regions without any clear
indication of presence of crystals. Such images can occur due
to improper focusing, camera lighting, etc. Since high intensity
might indicate the presence of crystals, these images should
be reviewed by an expert. Fig. 1 [d-f] provide some sample
images under this category.

Crystals - This category consists of images consisting
crystals. Crystals can have different shapes and sizes like
needle, spherulites, plates, or 3D crystals. Fig. 1[g-i] show
some sample images under this category.

Fig. 1. Sample protein crystallization images: [a-c] Non-crystals [d-f] Likely
leads [g-i] Crystals

IV. FEATURE EXTRACTION

For feature extraction, we follow the image processing
steps as described in our previous work [2]. Initial pre-
processing steps include image resizing to 320x240 pixels,
median filtering and applying three dynamic image thresh-
olding methods. Connected component labeling is done on



the thresholded images and corresponding blob features are
extracted. From each binary image, we extract 6 intensity
related features and 9 blob related features. Therefore, we
extract a total of 3*(6+9) = 45 features per image. Short
description of each of these features is listed below.

1) Intensity features

a)  Threshold intensity (7)

b)  No of white pixels in the binary image (/Vy
)

c) Average image intensity in the foreground
region (it r)

d) Standard deviation of intensity in the fore-
ground region (o)

e) Average image intensity in the background
region (1)

f)  Standard deviation of intensity in the back-
ground region (op)

2)  Region (Blob) features

a) No of blobs (1)

b)  Area of the largest blob (a;)

¢) The largest blob fullness (f1)

d)  The largest blob boundary pixel count(IV}')

e) The largest blob boundary uniformity mea-
sure (u1)

f)  The largest blob uniformity measure (u%)

g)  The largest blob measure of symmetry ((;)

h)  Average area of the top 5 largest blobs ex-
cluding largest blob (aq.q)

i)  Average fullness of the top 5 largest blobs
excluding largest blob (fqug)

V. EXPERIMENTAL RESULTS

Our experimental dataset consists of 2250 expert labeled
images with 67% non-crystals, 18% likely leads and 15%
crystals. Most crystallization images belong to non-crystal
category. Hence, we included more crystal images in our
dataset to reduce the class imbalance in the training and to
include all kinds of crystals. In this study, we consider two
classification problems (2-class and 3-class) for the protein
crystallization image classification. For the 2-class problem,
images in likely leads and crystals categories are grouped
together to form a single class called likely crystals. The two
classes, non-crystals and likely crystals are represented as 67%
and 33% in the dataset. 3-class classification is performed
using the original image categories.

We evaluate the classification performances of two generic
semi-supervised algorithms - self-training and Yet Another
Two Stage Idea (YATSI) using different base classifiers.
Our experiments assume limited labeled data availability.
We evaluate the performance of selected classifiers for 5
different training sizes (1%, 2%, 5%, 10%, and 20%) of
the labeled data. In each of these cases, remaining portions
of the data (99%, 98%, 95%, 90%, and 80%) are used for
testing (i.e., considered as unlabeled data). For the supervised
learning algorithms, we use classifiers from WEKA project
(www.cs.waikato.ac.nz/ ml/weka), which are implemented in
Java [15]. For the YATSI implementation, we use collective
classification package available from MARSDEN project

(http://www.cs.waikato.ac.nz/ fracpete/projects/collective-
classification/). Programs are written and tested in Java
programming language in Eclipse environment.

A. Performance comparison with self-training

Self-training is an iterative method where a training model
is retrained using the high confidence prediction from the
previous iteration to find the actual predictions for unlabeled
data. This is also a wrapper based semi-supervised approach.
Besides predicting the label for an instance, the classifiers
should output a value for the confidence on that prediction.
Hence, not all supervised classifiers can be used as the base
classifier with this approach. In our experiments, we use naive
Bayesian (NB) and sequential minimal optimization (SMO) as
the base classifiers for self-training. Since this is an iterative
method, we can proceed the self-training many times. We only
perform a single iteration. One parameter that can be adjusted
to limit the pre-labeled data into re-training is the threshold
for the minimum confidence (c) for prediction. We evaluate
our experiments for 3 different values of ¢ (0.8, 0.9 and 0.95)
for minimum confidence.

TABLE 1. 2-CLASS CLASSIFICATION PERFORMANCE WITH
SELF-TRAINING FOR NATVE BAYES AND SMO CLASSIFIERS

Classifier Training size
[ 1% | 2% | 5% | 10% [ 20%
NB 84.82 | 87.38 | 87.84 | 87.79 | 87.88
Self-NB (c=0.8) 85.48 | 87.27 | 87.96 | 87.84 | 87.89
Self-NB (c=0.9) 85.57 | 87.28 | 88.02 | 87.81 87.86
Self-NB (c=0.95) 85.63 | 87.28 | 88.02 | 87.86 | 87.85
SMO 82.56 | 88.39 | 88.53 | 88.59 | 89.02
Self-SMO (c=0.8) 83.01 89.13 89.11 89.27 | 89.20
Self-SMO (c=0.9) 83.14 | 89.28 | 89.18 | 89.37 | 89.32
Self-SMO (c=0.95) | 83.22 | 89.53 | 89.43 | 89.58 | 89.48
(a) Supervized vs Self-training (naive Bayes) (b} Supervised vs Self-training (SMO)
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Table I shows the experimental results with self-training
for 2 classifiers with different values of c. Self-NB and Self-
SMO correspond to the performances with self-training for
NB and SMO classifiers respectively. The value for ¢ in
the parentheses refer to the minimum confidence used to
select the pre-labeled instances for re-training. Fig. 2(a) and
Fig. 2(b) provide the performance comparison plot for the
two classifiers. Our results indicate that both NB and SMO
classifiers using self-training improve accuracies with respect
to supervised learning. For NB, the performances with self-
training is improved very slightly. For SMO, the accuracies



TABLE II. 2-CLASS CLASSIFICATION PERFORMANCE FOR DIFFERENT

CLASSIFIERS

Classifier | Training size
[ 1% [ 2% | 5% [ 10% [ 20%
NB 84.82 87.38 87.84 87.79 87.88
Y-NB (K=10) 86.01 88.59 89.64 89.90 91.19
Y-NB (K=20) 86.74 88.65 90.15 89.91 90.62
Y-NB (K=30) 86.78 | 88.76 | 90.19 | 89.62 | 90.28

MLP 82.86 | 88.26 | 90.95 | 93.60 | 95.13
Y-MLP (K=10) 82.26 | 88.06 | 89.99 | 92.09 | 92.94
Y-MLP (K=20) 82.48 | 88.22 | 89.88 | 92.58 | 92.86
Y-MLP (K=30) 82.57 | 88.31 | 90.07 | 9246 | 92.87

SMO 82.56 | 88.39 | 88.53 | 88.59 | 89.02
Y-SMO (K=10) | 83.57 | 88.10 | 90.41 92.09 | 92.98
Y-SMO (K=20) | 83.83 | 87.94 | 9034 | 91.90 | 92.97
Y-SMO (K=30) | 83.93 | 88.10 | 90.60 | 91.66 | 92.81

J48 89.06 | 88.62 | 91.71 | 92.72 | 94.49
Y-J48 (K=10) 88.40 | 88.50 | 90.76 | 91.92 | 93.02
Y-J48 (K=20) 88.18 | 88.44 | 90.52 | 92.54 | 93.08
Y-J48 (K=30) 87.87 | 88.52 | 90.97 | 9239 | 92.96

RF 84.41 | 8877 | 92.20 | 94.21 | 95.86
Y-RF (K=10) 84.31 88.64 | 90.92 | 92.08 | 92.99
Y-RF (K=20) 84.67 | 88.31 | 90.62 | 92.48 | 92.93
Y-RF (K=30) 84.54 | 88.34 | 90.96 | 92.36 | 93.01

with self-training is improved by around 1% over the accuracy
with SMO alone. For both the classifiers, the accuracy is
usually improved for higher value of c. Although the accuracies
are improved by using self-training, the time complexity of the
method is significantly high.

B. Performance comparison with YATSI

YATSI is a two stage semi-supervised learning algorithm.
Firstly, the labeled data is used to form the prediction model
using a supervised classifier. This model is used to get pre-
labels for the test instances. Secondly, K-neighborhood al-
gorithm is applied on the combined labeled and pre-labeled
instances to predict actual labels for the test (pre-labeled)
instances. In this study, we consider the following five super-
vised classification techniques - naive Bayesian (NB), sequen-
tial minimum optimization (SMO), J48, multilayer perceptron
(MLP) and random forest (RF) and their five YATSI semi-
supervised learning counterparts - YATSI with naive Bayesian
(Y-NB), YATSI with SMO (Y-SMO), YATSI with J48 (Y-J48),
YATSI with MLP (Y-MLP) and YATSI with random forest (Y-
RF).

For all the supervised classifiers, we apply the default
settings provided in Weka [15]. For YATSI classifiers, we test
K-nearest neighbors (K,,) with 10, 20 and 30 neighbors. For
the YATSI classifiers, the weighting factor for pre-labeled data
(F) is set to 1.

Table II provides the classification results for the 2-class
problem for 5 supervised classifiers and corresponding YATSI
classifiers. In the classifier column, for YATSI classifiers, the
value for K, is given in parenthesis. In each column, the
largest value is highlighted to indicate the best classifier for the
given training size. Fig. 3 shows the performance comparison
graphs for each classification method for 2-class problem.

Performance of Classifiers: Our initial observation is that
naive Bayesian and SMO classifiers benefit from YATSI. The
performance of these classifiers improved with YATSI. Naive
Bayesian classifier with YATSI improved its accuracy by 1.96

% for 1% training size and by 2.4% for 20% training size
using 30 neighbors. For naive Bayesian, performance improved
with semi-supervised approach whatever the portion of training
data. This can be visualized in Fig. 3(a). Similarly, SMO
with YATSI approach improved its accuracy by 1.37% for
1% training size and 3.79% for 20% training size. Fig. 3(c)
shows that the YATSI-SMO approach provides significant
improvement over SMO for all training sizes.

Our results indicate that MLP, J48, and random forest
classifiers do not benefit from YATSI method. The performance
of random forest with YATSI is almost 2.85% down the
supervised one for 20% training whereas it is almost similar
for 1% training set.

In general, the performances of the YATSI classifiers
improved with higher values for K,, up to certain value.
However, for higher values, the variation in performance was
not consistent. A good choice for K, is critical for the
performance of YATSI classifiers. For real deployment of the
classifiers, the value for K,,,, can be determined by optimizing
the performance on a validation set.

As the size of training data increases, the performance
is improved for all classifiers. This is usually true for semi-
supervised approach as well. This improvement comes at the
cost of extra labeled data. Hence, this should be analyzed
separately.

In Fig. 3(f), we plot the graphs combining the best condi-
tions for each of the five classifiers considered. This allows us
to compare the performances of all classifiers in a single figure.
From the figure, we can observe that supervised learning using
random forest provided the best performance on our dataset.

Performance over 3-class classification: We also inves-
tigated the supervised versus YATSI approach for 3-class
problem. Table III provides the classification results for the 3-
class problem and Fig. 4 shows the corresponding performance
graphs for each classification method. Our results show that the
results for 2-class and 3-class problem are almost consistent.
Similar to the results for 2-class problem, the performances
of naive Bayesian and SMO classifiers are improved by
the YATSI approach. Naive Bayesian classifier with YATSI
improved its accuracy by 1.95 % for 1% training size and by
2.45% for 20% training size using 30 neighbors. Similarly,
SMO-YATSI improved by 0.66% for 1% training size and
by 4.46% for 20% training size. Overall improvement by
the YATSI approach for the two classifiers over supervised
approach can be visualized in Fig. 4 (a) and Fig. 4 (¢).

As in the results for 2-class problem, classifiers J48, MLP
and random forest did not benefit from the semi-supervised ap-
proach. The combined plot with the best classifiers for 3-class
classification is drawn in Fig. 4(f) which shows that supervised
learning using random forest gives the best performance over
all other classifiers.

C. Summary and Discussion

The pre-labeled data may have incorrect labels. Self-
learning classifier used the pre-labeled having high confidence.
In YATSI, the incorrect labels are expected to be corrected
by K-nearest neighborhood classifier. Therefore, YATSI per-
forms better than self-learning for naive Bayesian and SMO
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TABLE III. 3-CLASS CLASSIFICATION PERFORMANCE FOR DIFFERENT
CLASSIFIERS
Classifier [ Training size
[ 1% T 2% | 5% [ 10% | 20%
NB 73.92 | 78.39 | 80.19 | 81.41 | 81.26
Y-NB (K=10) 75.11 | 79.88 | 82.38 | 83.83 | 85.16
Y-NB (K=20) 75.61 | 79.95 | 82.01 | 83.40 | 84.16
Y-NB (K=30) 75.87 | 79.72 | 82.43 | 83.22 | 83.71
MLP 76.57 | 80.61 | 84.90 | 87.21 | 90.45
Y-MLP (K=10) | 76.96 | 80.27 | 84.13 | 85.58 | 87.13
Y-MLP (K=20) | 77.16 | 79.96 | 83.08 | 86.00 | 86.84
Y-MLP (K=30) | 77.23 | 79.68 | 83.06 | 86.08 | 86.80
SMO 7429 | 7727 | 79.05 | 80.74 | 82.53
Y-SMO (K=10) | 77.16 | 80.42 | 83.52 | 86.09 | 87.42
Y-SMO (K=20) | 76.98 | 80.30 | 82.70 | 86.22 | 87.22
Y-SMO (K=30) | 77.04 | 79.94 | 83.10 | 8593 | 86.99
J48 75.61 | 77.78 | 83.62 | 86.08 | 89.13
Y-J48 (K=10) 75.50 | 78.59 | 83.93 | 85.58 | 87.07
Y-J48 (K=20) 75.56 | 78.61 | 8328 | 85.87 | 86.64
Y-J48 (K=30) 75.76 | 78.55 | 83.55 | 85.87 | 86.49
RF 76.92 | 80.77 | 85.19 | 88.18 | 91.07
Y-RF (K=10) 77.10 | 80.82 | 84.07 | 85.70 | 87.33
Y-RF (K=20) 77.24 | 80.58 | 83.15 | 86.17 | 86.83
Y-RF (K=30) 77.22 | 80.20 | 83.45 | 86.24 | 86.74

classifiers, since these classifiers are benefiting from these
corrections. However, for other classifiers, RF, J48, and MLP,
these pre-labeled data are just noise to the system. In other
words, the addition of pre-labeled data misguides the inference

for these classifiers. These classifiers would rather prefer to
work on accurately labeled data. We should note that random
forest with supervised learning outperforms others.

This may lead to the following discussion. If the base
classifier with supervised learning works comparatively well
for naive Bayesian and SMO classifiers, they may be chosen
as the base classifiers and semi-supervised learning might be
beneficial. On the other hand, if a classifier, such as REF,
performs well as a base classifier, there is no need to try semi-
supervised learning since the pre-labeled data is not beneficial
for RE.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the performance of two
wrapper methods for semi-supervised learning algorithms for
classification of protein crystallization images. Our motivation
behind this work was to apply semi-supervised approach and
see if we get reasonable performance with limited labeled data.
We compared the performances of semi-supervised classifica-
tion techniques using self-training and YATSI approach. Our
results show that naive Bayesian (NB) and sequential minimal
optimization (SMO) classifiers benefit from both the self-
training and YATSI semi-supervised approach on our dataset.
However, classifiers J48, multilayer perceptron (MLP) and
random forest (RF) did not show improvement by applying
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Fig. 4. Supervised vs YATSI semi-supervised performance comparison for 3-class classification a) Naive Bayesian b) Multilayer perceptron (MLP) c) Sequential
minimal optimization (SMO) d) J48 e) Random forest f) Best classifier for each of the five classifiers

semi-supervised approach. In overall, random forest provided
the best performance on our dataset.

As further work, we would like to investigate active learn-

ing in combination with semi-supervised learning to improve
the classification performance.
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