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Abstract—In this paper, we investigate the performance of 
classification of protein crystallization images captured during 
protein crystal growth process. We group protein 
crystallization images into 3 categories: noncrystals, likely 
leads (conditions that may yield formation of crystals) and 
crystals. In this research, we only consider the subcategories of 
noncrystal and likely lead protein crystallization images 
separately. We use 5 different classifiers to solve this problem 
and we applied some data preprocessing methods such as 
principal component analysis, min-max normalization and z-
score (ZS) normalization methods to our datasets in order to 
evaluate their effects on classifiers for the noncrystals and 
likely-leads datasets. We performed our experiments on 1606 
noncrystal and 245 likely lead images independently. We had 
satisfactory results for both datasets. We reached 96.8% 
accuracy for noncrystal dataset and 94.8% accuracy for likely 
leads dataset. Our target is to investigate the best classifiers 
with optimal preprocessing techniques on both noncrystal and 
likely leads datasets. 

Keywords—protein crystallization; classification; 
normalization; principal component analysis 

I. INTRODUCTION 
Each protein has its own particular 3D structure. The 

structure of a protein is significantly important, since it 
provides information about the functionality of proteins. 
Protein crystallization is the trial process of growing proteins 
deployed into numerous solutions with varying conditions 
[1]. Some of these trials may lead to a successful 
crystallization and this may help crystallographers identify 
the structure of a protein crystal using X-ray diffraction [1]. 
The protein crystallization is a challenging activity because 
these experiments may take so long time or so many 
attempts to grow a protein crystal due to their sensitivity to 
thermodynamic (pH, temperature, etc.) and hard to control 
kinetic (equilibration rates, molecular association, etc.) 
factors [2]. 

Today’s robotic systems have started to perform the 
protein crystallization experiments in an automated way. 
Those robotic systems may execute thousands of 

experiments per day and the systems can record the images 
of each plate well periodically. This enables experts to track 
the growth of the protein structure over a period of time.  
The drawback of these robotic systems is that each image 
needs to be reviewed by a human expert to label it [3]. 
Evaluation of these results automatically is as important as 
performing these experiments since there are thousands of 
images to examine.  

There has been some research on the classification of 
protein crystallization images in the literature, and there are 
many attempts to split these images into different number of 
categories. Sigdel et al. [4] have classified protein 
crystallization images into 3 main categories (crystals, likely 
leads, and noncrystals). Bern et al. [5] used 5 categories 
(empty, clear, precipitate, microcrystal hit, and crystal) in 
their study. Spraggon et al. [6] have divided the images into 
6 categories (experimental mistake, clear drop, homogenous 
precipitant, inhomogeneous precipitant, microcrystals, and 
crystals). Cumbaa et al. [3] have offered to classify the 
proteins images into 3 or 10 categories.  

Our dataset comprises of protein crystallization images 
that were collected at iXpressGenes, Inc. We have 
categorized images into three groups at UAH with the help 
of Dr. Pusey at iXpressGenes, Inc. In this paper, we only 
focus on classification of noncrystals and likely leads 
subcategories separately. To solve these classification 
problems, we compare the results of Random Forest (RF), 
Bayesian (BYS), Support Vector Machines (SVM), Neural 
Networks (NNW), Decision Tree (ID3), and Linear 
Discriminant Analysis (LDA) classifiers to determine how 
they perform for our dataset. Before the classification 
process, we also apply some data preprocessing methods 
such as normalization and data reduction since these kinds of 
preprocessing techniques may improve the accuracy and the 
effectiveness of the classifiers [7]. In this study, we apply 
min-max (MM), z-score (ZS) normalization and principal 
component analysis (PCA) to our datasets to evaluate the 
performance of classifiers.  
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This paper is organized as follows. The categories and 
features of the protein crystallization images are described in 
Section 2 and Section 3, respectively. Brief explanations of 
the classification and data preprocessing techniques are 
given in Section 4. The experiments results are presented in 
Section 5. Finally, the last section concludes our paper.  

II. BACKGROUND 
We classify protein crystallization images into three main 

categories: noncrystals, likely leads, and crystals. In this 
paper, only non-crystals and likely leads data are analyzed. 
We focus on these two categories since a) these may give 
information about early stages of crystal formation and b) 
crystal sub-category classification may require a different 
feature set that may indicate the shapes of crystals. The 
subcategories of these classes are described below. 

A. Noncrystals 
This category consists of images under the following 

protein crystallization phases: clear drop, phase separation, 
and regular granular precipitates.  The conditions 
corresponding to these images do not have crystals and are 
observed in the early stages of protein crystal growth 
whether successful or not. Images under phase separation 
occur very rarely. The phase separation category is not 
considered in our experiments because of limited data. 
Therefore, we classify only into the two sub-categories of the 
non-crystals: clear drop and regular granular precipitates in 
this paper. 

1) Clear Drop: Clear drop category corresponds to the 
initial state of the crystallization process. Fig. 1 shows a few 
sample images under this category. 

 
2) Regular Granular Precipitate: This category consists 

of images where the precipitation has just begun. 
Precipitates are seen in the form of clouds. Fig. 2 shows 
some sample images under this category. 

B. Likely Leads 
This category contains images of protein crystallization 

that are in intermediate phase between noncrystals and 
crystals. This means that those images are good candidates to 
complete their structural growth successfully. This category 
consists of two subsets: granular precipitate (microcrystals) 
and unclear bright regions. These subcategories are briefly 
described below. 

1) Granular Precipitate or Microcrystals: This category 
contains the images of numerous microcrystals. This 
indicates that the precipitates have started to form crystals. 
Fig. 3 provides a few sample images under this category.  

 
 

 
Fig. 1. Clear Drop	
  

 

    
Fig. 2. Regular Granular Precipitate	
  

 

 
Fig. 3. Granular Precipitate or Microcrystals 

2) Unclear Bright Regions: This category includes 
images with bright regions suggesting formation of crystals. 
However, the shapes of crystals are not clear. The images 
could be affected by conditions such as improper focusing, 
and lighting, etc. Since high intensity might indicate the 
presence of crystals, those images should be double checked 
by experts. Fig. 4 shows some sample images in this 
category. 

 

         
Fig. 4. Unclear Bright Regions 

 

III. OVERVIEW OF FEATURES 
For feature extraction, we follow the image processing 

steps described in [4].  Initial pre-processing steps include 
image resizing to 320x240 pixels, applying median filter, 
image thresholding, skeletonization of binary images and 
binary large object (blob) detection. Feature extraction 
depends on the quality and correctness of the binary (or 
thresholded) images. Different thresholding techniques can 
provide good results for different images. Hence, combining 
the results from multiple thresholding techniques is helpful. 
For each image, we apply 3 thresholding techniques and 
obtain 3 binary images. From each binary image, we extract 
6 intensity related features and 9 blob related features. 
Therefore, we extract a total of 3*(6+9) = 45 features per 
image.  

A. Intensity features 
• Threshold intensity 
• Number of white pixels in the binary image 
• Average image intensity in the foreground region 



• Standard deviation of intensity in the foreground region 
• Average image intensity in the background region 
• Standard deviation of intensity in the background 

region 

B. Region (Blob) features 
• Number of blobs 
• Area of the largest blob  
• The largest blob fullness  
• The largest blob boundary pixel count  
• The largest blob boundary uniformity measure  
• The largest blob uniformity measure 
• The largest blob measure of symmetry  
• Average area of the top 5 largest blobs excluding 

largest blob 
• Average fullness of the top 5 largest blobs excluding 

largest blob 
 

IV. PREPROCESSING AND CLASSIFICATION TECHNIQUES 
Our study includes an extensive investigation and 

comparison of various techniques to reach the optimal 
classification results. These techniques are categorized into 2 
groups. The first group is the preprocessing techniques that 
consist of two normalization methods and PCA data 
reduction technique. The classifiers are described in the 
second group. We select some state-of-art classification 
methods in the literature from different approaches such as 
probabilistic, categorical, linear, and ensemble classifiers. In 
this way, we aimed to cover all possible solutions and find 
the best one for this specific problem. The following parts of 
this section describe the normalization methods, principal 
component analysis and classification techniques that are 
used in our experiments. 

 

A. Normalization 
Normalization is a data transformation method that maps 

the data into a specific range. That transformation may affect 
the efficiency and the accuracy of classifiers.  While some 
classifiers such as neural networks benefit from 
normalization significantly, the normalization of data may 
not affect some classifiers such as naive Bayesian and 
decision trees. Particularly, the algorithms that are using 
distance measures may produce reasonable results with 
normalization, because the distance metrics may produce 
meaningful values after normalization. Moreover, the 
normalization may improve the classification accuracy of the 
neural networks (NNW) since it accelerates the training 
stage [7].  

In our study, we use min-max and z-score normalization 
in order to evaluate their effects on classifiers for our dataset.  
Min-max normalization maps the original data (OD) range 
min,max    into new range as min!,max!    in a linear 

fashion. We map our dataset into range of 0,1  in our 

experiments. In min-max normalization, the new value 𝑣!  
of current data 𝑣  is calculated as in (1) [8]: 

 
𝑣! = !!!"#

!"#!!"#
max! −min! +min!                (1) 

 
In z-score normalization, the data is normalized with 

respect to its mean  (𝜇!) and standard deviation   𝜎! . The 
new value new!   of original data is calculated as in (2) [8]: 

 
𝑣! = !!!!

!!
       (2) 

 

B. Data Reduction using Principal Component Analysis 
 In many classification problems, there exist one or more 

features in the dataset that do not have distinctive properties 
for separation. Some features may be highly correlated or 
completely irrelevant to the sample. That is why, data 
reduction techniques are offered to eliminate these useless 
features. PCA is one of the famous approaches to reduce the 
dimensionality [9]. Basically, it transforms the complete 
dataset into a new space of linearly uncorrelated attributes 
using orthogonal transformation. PCA is done by eigenvalue 
decomposition of a correlation matrix such that the 
eigenvector of the highest eigenvalue captures the largest 
possible information or variance about the dataset. In this 
manner, a subset of most informative eigenvectors (or 
principal components) is selected. Using this subset, the 
original dataset is transformed into a lower dimensional 
space in which every data sample is represented by a smaller 
feature vector.  

In this study we reduce the number of features from 45 to 
3, 5, 7, 9, and 11, respectively. And then we classify the 
dataset using these numbers of features.   

C. Classifiers 
The results of the classification really depend on the 

structure of the dataset. Different types of datasets may 
require different types of classifiers [10]. For this reason,  in 
this study, we examined 6 different classifiers to determine 
which one offers the best classification results for our 
datasets. Selected classifiers are described below with their 
characteristics. 

1) Random Forest (RF): RF is an ensemble classifier 
that includes many number of decision tree classifiers that 
are generated from different subsets of features and number 
of training samples. By combining the results of all decision 
trees RF predicts the final class based on a voting 
mechanism. We included this method into the paper because 
it is one of the most powerful classifiers and it can assign 
importance values to the features [10].  

2) Naïve Bayesian Classifier (BYS): BYS is a 
probabilistic classifier technique that decides the class of the 
instance by providing the probability of membership to the 
classes. The class with the highest probability is predicted 
as the result class. Naïve Bayesian classifier is selected 
since it is robust to the noise, training stage is fast and 



classification is independent from the range of the feature 
values [10].  

3) Support Vector Machines: SVM is one of the most 
powerful classification techniques in the literature. In the 
training stage, it tries to find the samples that maximize the 
decision boundary between classes. These samples are 
called “support vectors” that help to decide the position of 
the classification border. In this paper, SVM is selected 
because it is a robust linear classifier [10].   

4) Artificial Neural Network (NNW): NNW is a 
computational training model that is originally inspired 
from human neural system (particularly brain). The NNW 
model is formed by different number of interconnected 
neurons that are communicated with each other. We select 
NNW in this study because it can learn most datasets 
effectively in the training stage even if the classes are 
nonlinearly distributed. Although there are some drawbacks, 
NNW is commonly used technique for various classification 
problems [10]. 

5) Decision Tree: ID3 is a classification technique that 
uses a tree-based graph of features to separate the classes of 
the samples. In the training stage, ID3 creates leaf nodes 
based on the feature outcomes. Therefore, it provides good 
performance for categorical data types. It can be utilized as 
a rule based classifier that requires relatively less time to 
create training model. Furthermore, testing is also quite fast 
after building the decision tree [10]. 

6) Linear Discriminant Analysis:  LDA is also one of 
the fundamental techniques in the literature for 
dimensionality reduction and classification problems. 
Similar to PCA, LDA transforms the data into a new space. 
But unlike PCA, it takes the class labels into account. It 
targets to maximize in-class similarity while minimizing 
inter-class similarity in the new space. After transforming 
the data, a linear decision border is applied for 
classification. LDA is relatively weak approach compared 
to the other classification methods but it can be considered 
as a benchmark classifier since it is commonly used 
technique in many areas [10].  

 

V. EXPERIMENTS 
In this section, the classification operation is performed 

for specific portion of our protein crystallization images 
dataset. Our dataset contains 2250 images of 3 major classes 
(67% noncrystal, 18% likely leads, and 15% clear crystal 
images) of proteins. However, in this study, we consider the 
classification of subcategories of noncrystals and likely 
leads, independently. Since the crystal category may require 
a different feature set, it is not covered in this paper. 
Although noncrystals consist of 3 subcategories, which are 
mentioned, in Section 2, we will use 2 subcategories of 
noncrystals, because one of its subclasses is quite rare. 
Therefore, both datasets have two subsets to classify. Since 
there are only two classes to classify for both datasets, we 
may adequately use binary classifiers to solve this problem.  

In this classification problem, we apply the classifiers 
mentioned in the previous section. An extensive comparison 
has been presented for different cases. We rerun the 
experiments by using different normalization techniques and 
different number of principal components (PCs).  Since we 
use random and stratified sampling, we repeat the 
experiments 5 times for each case to provide more reliable 
results. The minimum (min), maximum (max) and average 
accuracies of each classifier are presented in the tables in the 
following subsections. At the end of this section, a summary 
of the results is provided. 

 

A. Noncrystal Classification 
Our noncrystal dataset consists of 1606 observations and 

87% of those samples belong to clear drop and the remaining 
part belongs to regular granular precipitate. The dataset is 
fragmented into two parts: training set and testing set. The 
training set contains 75% of the samples and the testing set 
consists of 25% of the samples. We repeat our experiments 5 
times on original, min-max and z-score normalized form of 
dataset. Table Ι shows minimum, maximum and mean values 
of accuracies for each classification technique with respect to 
data transformation (Data Trans.) and Fig. 5 presents the 
changes of classifiers with the normalization.  

According to the results in the Table Ι, random forest 
gives the best accuracy in all classifiers. It can reach 97% 
accuracy on the average. On the other hand, Fig. 5 shows 
that normalization of data improves support vector machine, 
random forest, and neural network accuracies, but neural 
network shows the most significant improvement by 
normalizing the data. It gives the best results with z-score 
normalization. In addition, naïve bayesian classifier is not 
affected by normalization. Results of decision tree and linear 
discriminant analysis are inconsistent with respect to data 
normalization. 

We also apply PCA technique to our dataset in order to 
evaluate the effects of the feature reduction on different 
classifiers. The results are shown in Table ΙΙ, with respect to 
the number of principal components. 

 
TABLE I. COMPARISON OF DIFFERENT NORMALIZATION TECHNIQUES ON 

CLASSIFIERS FOR NONCRYSTAL DATASET 

Data Trans. RF BYS SVM NNW ID3 LDA 

OD min 0.953 0.870 0.913 0.868 0.933 0.913 
max 0.975 0.870 0.933 0.870 0.958 0.925 
mean 0.962 0.870 0.925 0.870 0.945 0.921 

MM min 0.953 0.870 0.925 0.870 0.925 0.910 
max 0.970 0.870 0.940 0.930 0.943 0.925 
mean 0.962 0.870 0.931 0.909 0.935 0.919 

ZS min 0.960 0.870 0.910 0.943 0.935 0.910 
max 0.973 0.870 0.945 0.955 0.968 0.928 
mean 0.968 0.870 0.931 0.950 0.949 0.919 

 



 
Fig. 5. Effects of data normalization on classifiers for noncrystal dataset 

 
TABLE II. COMPARISON OF DIFFERENT NUMBER OF PRINCIPAL 

COMPONENTS ON CLASSIFIERS FOR NONCRYSTAL DATASET 

#PC RF BYS SVM NNW ID3 LDA 
3 0.894 0.860 0.542 0.872 0.877 0.835 
5 0.894 0.852 0.680 0.861 0.880 0.828 
7 0.896 0.845 0.737 0.782 0.868 0.830 
9 0.889 0.753 0.752 0.873 0.849 0.808 
11 0.892 0.707 0.778 0.876 0.858 0.817 

 

According to the results in Table ΙΙ, random forest gives 
the best results with 89% accuracy on average. However, the 
increasing number of principal components does not affect 
random forest consistently; it improves support vector 
machine and it affects naïve Bayesian adversely. The results 
for the rest of the classifiers do not yield consistent results 
with respect to the principal component analysis. We had the 
best results for random forest with the 7 principal 
components (PCs), for Bayesian with the 3 PCs, for support 
vector machine with 11 PCs, for neural network with the 11 
PCs, for decision tree with the 5 PCs, and for linear 
discriminant analysis with the 3 PCs.  Our results imply that 
there is no consistent number of PCs that provide the best 
accuracy for all classifiers. 

B. Likely Leads Classification 
In our likely leads dataset, we have 245 observations. 

70% of those observations belong to unclear bright images 
category and 30% of those belong to granular precipitate or 
microcrystals category. Similar to noncrystals, the likely 
leads dataset is split into two subsets as training set and 
testing set. We use 75% of samples as training set and 25% 
of samples as testing set. We rerun our experiments 5 times 
on original, min-max and z-score normalized datasets. The 
minimum, maximum and mean values of accuracies of each 
classifier are shown in Table ΙΙΙ and Fig. 6 represents the 
changes in the classifier with the normalization. 

According to Table ΙΙΙ, random forest gives the best 
result with 93% accuracy. Fig. 6 shows that normalization of 
the data improves the accuracy of random forest and neural 
network classifiers. Even if neural network classifier does 
not have the best accuracy, it shows better improvement than 
random forest. We can say that the normalization does not 
affect the rest of classifiers consistently.  

TABLE III. COMPARISON OF DIFFERENT NORMALIZATION TECHNIQUES ON 
CLASSIFIERS FOR LIKELY LEADS DATA SET 

Data Trans RF BYS SVM NNW ID3 LDA 

OD 
min 0.902 0.721 0.869 0.295 0.852 0.525 
max 0.967 0.885 0.918 0.770 0.902 0.820 
mean 0.928 0.810 0.895 0.649 0.875 0.721 

 MM 
min 0.902 0.787 0.852 0.852 0.836 0.590 
max 0.967 0.918 0.934 0.967 0.951 0.754 
mean 0.934 0.846 0.892 0.911 0.895 0.689 

  ZS 
min 0.918 0.770 0.869 0.902 0.803 0.656 
max 0.984 0.852 0.984 0.984 0.934 0.852 
mean 0.948 0.803 0.911 0.941 0.862 0.734 

 

 
Fig. 6. Effects of data normalization on classifiers for likely leads dataset 

 

To evaluate effects of number of principal components 
on different classifiers for likely leads dataset, we present 
our results of experiments with respect to the number of 
principal components in Table Ι⋁.  

TABLE IV. COMPARISON OF DIFFERENT NUMBER OF PRINCIPAL 
COMPONENTS ON CLASSIFIERS FOR LIKELY LEADS DATASET 

#PC RF BYS SVM NNW ID3 LDA 
3 0.754 0.590 0.689 0.721 0.754 0.623 
5 0.803 0.639 0.721 0.770 0.820 0.656 
7 0.787 0.525 0.787 0.770 0.803 0.689 
9 0.754 0.656 0.787 0.770 0.754 0.574 
11 0.738 0.639 0.705 0.672 0.721 0.689 

 

According to the our results in Table Ι⋁, we obtained the 
best accuracy for random forest with the 5 PCs, for bayesian 
with the 9 PCs, for support vector machine with the 7 PCs, 
for neural network with 5 PCs, for decision tree with 5 PCs 
and for linear discriminant analysis with 7 PCs. The results 
state that we get the best accuracy with 5 or 7 PCs for all 
classifiers except for naive Bayesian classifier. The results 
also show the increasing the number of PCs improves 
accuracy of support vector machine but it does not affect the 
results of the rest of the classifiers consistently. 

C. Summary 
According to the results in Tables Ι and ΙΙ, random forest 

gives satisfactory results for likely leads and noncrystal 
dataset with those features mentioned in Section 3. 
Normalization improves random forest and neural network 
accuracies for both datasets, but the improvement of neural 
network is more significant than the improvement of random 
forest. Random forest and neural network give the best result 
with z-score normalized data for both datasets. If we use 



Bayesian, decision tree as classifiers, normalization does not 
show consistent improvement on the results of those 
classifiers. 

  According to Tables ΙΙΙ and Ι⋁, applying PCA to both 
dataset does not improve results in Tables Ι and ΙΙ, but PCA 
results for noncrystals are better than likely leads. Random 
forest gives the best results with 89.6% accuracy on 7-PC 
noncrystal dataset and decision tree could reach 82% 
accuracy on 5-PC likely leads dataset. However, we cannot 
recommend any specific number of PCs for both dataset due 
to inconsistent results of classifiers. 

We have received the best accuracy with random forest 
classifier using z-score normalization for both datasets. Z-
score normalization improved 0.6% to 96.8% for non-crystal 
dataset and 2% to 94.8% for the likely leads dataset. On the 
other hand, z-score normalization improved accuracy of 
neural networks 8% to 95% for non-crystal dataset and 
improved 29.2% to 94.1%. 

PCA did not improve our results. This may be due to our 
feature set. This may be an indication that our feature set has 
little to none linear correlation among features. 

 

VI. CONCLUSION 
We performed our experiments with 6 different 

classifiers on original, normalized and reduced datasets.  The 
experimental results suggested choosing random forest 
generally gives satisfactory results with normalization on 
both noncrystal and likely leads dataset. The experiments in 
this paper also demonstrate a) normalization of data improve 
the accuracies of random forest, neural network, and support 
vector machines on the noncrystals dataset, b) it improves 
random forest and neural network on the likely leads data 
set, and c) z-score normalization gives the best results for 
those classifiers. Although neural network does not give the 
highest accuracy, it shows a significant improvement on both 
dataset with normalization. We have acquired fairly good 
accuracy results for sub-categories of non-crystal and likely 
leads. After applying principal component analysis, RF and 
ID3 give the best results for noncrystals and likely leads 
datasets, respectively. Nonetheless, these classifiers do not 

show any consistent improvement with respect to increasing 
PCs. Increasing number of PCs may improve support vector 
machines on both datasets. PCA results may indicate that our 
feature set has minimal linear correlation, and we may rely 
on our feature set for protein crystallization classification. 
We plan to work on the crystal sub-categories as future 
work. Crystal categories may require a different set of 
features.  
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