
Interactive Multimedia Presentation Management in Distributed Multimedia
Systems

Ramazan Savas Aygun and Aidong Zhang
Dept. of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, NY 14260

{aygun,azhang}@cse.buffalo.edu

Abstract

Multimedia presentations are difficult to handle in
existence of user interactions and complex
synchronization requirements. In this paper, we
present a synchronization model which can handle
both time-based and event-based actions. The model
can cope with the VCR-type user interactions. We also
give a simple rule-based synchronization specification
language which does not complicate as user
interactions are allowed.

1. Introduction

There has been tremendous effort on the management
of multimedia presentations for more than a decade.
Applications such as video-on-demand, educational
learning and tutoring, asynchronous distant and
collaborative engineering need sophisticated models to
store, access, query and present the multimedia data.
These applications require a sophisticated
synchronization model which can handle complex
synchronization requirements. The model should be
supplemented with a language which does not
complicate as user interactions are allowed.

Composition of media objects play an important
role in today's multimedia databases. A multimedia
presentation must synchronize the media objects that
participate in the presentation. The delay or loss of
data over the network should not corrupt the integrity
of the synchronization among individual media
streams. In a multimedia database, the user queries
may require to retrieve a multimedia presentation
rather than a single stream. The users should be able to
perform play, pause, resume, (fast-slow) forward,
(fast-slow) backward and skip operations which
provide great flexibility over the presentation. If the
query presentation manager cannot support these

functionalities in a consistent manner, the multimedia
database will not be satisfiable to users.

We provide a model and a language which can
handle both event-based and time-based actions having
complex synchronization requirements with less
complexity. The language contains the specification of
media objects that participate in the presentation and
the synchronization rules. The synchronization rules
are based on the ECA (Event-Condition-Action) rules.
The event expression, the condition statement and the
actions that should be executed are parts of a rule. The
synchronization model determines when these events
are signaled, when conditions are met and when
actions should be executed. The model is responsible
for the integrity of the presentations after user
interactions such as play, pause, resume, (fast or slow)
forward, (fast or slow) backward and skip. These user
interactions provide flexible access and scan on the
results of a query. They do not complicate the
specification of a presentation, since our model is an
event-based model and the synchronization rules for
skip and backward operations are deduced directly
from the other rules. Synchronization rules separate
events, conditions and actions. Our model does not
have the disadvantages which the previous models
have, such as limitation with either time-based or
event-based actions, allowing only subset of the user
interactions, limitation on the synchronization
specification and application, and the complexity of
the declaration if user interactions are supported.

In this paper, we will first describe our model in the
next Section. We will discuss user interactions in
Section 3. In Section 4, we will explain the language
by giving examples. The last section concludes the
paper.

raygun
Text Box
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The final published version is available at http://dx.doi.org/10.1109/ITCC.2001.918805.

2. The synchronization model for
multimedia presentations

The synchronization model layouts media objects in
a presentation. The synchronization model should have
the following properties:
• It can compose media objects in various ways.
• It should support user interactions of VCR type

like skip or backward which are helpful in
browsing of the query results.

• It should have a simple way of specification of
multimedia presentations. The user interactions
usually complicate specifications.

• It should support both time-based and event-based
operations.

The model has four major components, receivers,
controllers, actors and the timeline. Events, conditions
and actions are handled by these components.

2.1 Events, conditions and actions

When events are received, the corresponding
conditions are checked. If a condition is satisfied, the
corresponding actions are executed.

Event. There are 3 types of stream events, start
event, end event and realization event. The start and
end events are signaled when the first and last points
(e.g. frames in a video stream) are processed by the
stream, respectively. The realization event is signaled
if a specific point of the stream is encountered. For
example, this point is a frame number in a video
stream. The realization event is important, because it
enables to start new streams within a previously started
stream. Each event has an event source, event data,
event type and event destination. Event source can be
the user or a stream. Composition of events may be
required to trigger actions instead of a single event.
Composite events can be created by boolean operators
AND and OR:

AND(e1,e2,...,en): All events(e1 to en) should be
signaled to trigger an action.

OR(e1,e2,...,e): At least one of the events should be
signaled to trigger an action.
For example, an image will be shown when the
corresponding parts in both audio AND video data are
realized. Composite events can also be generated by
any combination of composite events.

Condition. A condition indicates the status of the
presentation and its media objects. The most important
condition is the direction of the presentation. The
receipt of the events matter when the direction is
forward or backward. Other types of conditions
include the states of the media objects. For example,
an audio stream may be turned off during fast-forward

presentation and events that are expected by this
stream may not be received. This kind of cases must be
handled carefully.

Action. An action indicates what to execute when
conditions are satisfied. Starting and closing a stream,
and displaying or hiding images, slides and text are
sample actions. There are two kinds of actions:
Immediate Action and Deferred Action. Immediate
action is an action that should be applied as soon as the
conditions are satisfied. Deferred action is time-based
and it can be started after enough time passing.

P
r
e
s
e
n
t
a
t
i
o
n

Receiver Receiver Receiver Receiver ReceiverReceiverReceiverReceiver

Actor Actor Actor Actor Actor Actor Actor Actor

Stream

Stream Stream Stream Stream Stream Stream Stream Stream

a
n
a
g
e
r

M

Controller
Layer

Actor
Layer

Receiver
Layer

condition expression

event expression
Controller

condition expression

event expression
Controller

condition expression

event expression
Controller

condition expression

event expression
Controller

Stream User.....

.....

.....

.....

.....

.....

Stream Event Source

signaling of events

execution of actions

Figure 1. The synchronization model.

2.2 Receivers, controllers and actors

The synchronization model is composed of three
layers, the receiver layer, the controller layer and the
actor layer. Receivers are objects to receive events.
Controllers check composite events and conditions
about the presentation such as the direction. Actors
execute the actions once their conditions are satisfied.
The relationships between these elements are depicted
in Figure 1.

Definition 1. A receiver is a triple R=(e, t, C)
where e is the event that will be received; t is the timer;
and C is a set of controller objects.

Receiver R can question the event source through
its event e. When e is signaled, receiver R will receive
e. Receiver R also knows whether the event source
can send the events, if not it takes necessary
precautions. These precautions may assume that the
event e will be signaled after some amount of time, or
may ignore that e will be signaled. So, receiver R has a
timer object. When receiver R receives event e, it
sends information of the receipt of e to all its
controllers in C. A receiver object is depicted in Figure
2. There is a receiver for each single event.

Event Source Event

Controller

Controller

Controller

Notification
Questioning

RECEIVER

Timer

Receipt

Question

Sending Event

Figure 2. A receiver object.
Definition 2. A controller is a 4-tuple C = (R, ee,

ce, A) where R is a set of receivers; ee is an event

expression; ce is a condition expression; and A is a set
of actors.

Controller C has two components to verify,
composite events ee and conditions ce about the
presentation. When the controller C is notified, it first
checks whether the event composition condition ee is
satisfied by questioning the receiver of the event. Once
the event composition condition ee is satisfied, it
verifies the conditions ce about the states of media
objects or the presentation. After the conditions ce are
satisfied, the controller notifies its actors in A. A
controller object is depicted in Figure 3.

OR

Receiver

Receiver

Receiver Actor

Actor

AND

CONTROLLER

EVENT EXPRESSION CONDITION EXPRESSION

direction = FORWARD

and

stream is in PLAY state

Notification
Questioning

activation

Figure 3. A controller object.
Definition 3. An actor is a pair A = (a, t) where a is

an action that will be executed after time t passed.
Once actor A is informed, it checks whether it has

some sleeping time t to wait for. If t is greater than 0,
actor A sleeps for that amount and starts action a. If t is
0, action a is an immediate action. If t>0, action a is a
deferred action. An actor object is depicted in Figure 4.

Controller Stream

ACTOR

Timer

Notification
action

execute
action

Figure 4. An actor object

2.3 Timeline

If skip and backward operations are allowed, alive
actions, received or not-received events, sleeping
actors and satisfied controllers should be known for
any point in the presentation. The timeline object
provides this kind of information. The existing work
uses timeline to signal events at specific points or to
layout streams.

Definition 4. A timeline object is a 4-tuple T =
(receiverT, controllerT, actorT, actionT) where
receiverT, controllerT, actorT and actionT are
timelines for receivers, controllers, actors and actions,
respectively. The timelines receiverT, controllerT,
actorT and actionT keep the expected times of the
receipt of events by receivers, the expected times of
the satisfaction of the controllers, the expected times of
the activation of the actors and the expected times of
the start of the actions, respectively.

The information that is needed to create the timeline
is the duration of streams and the relationships among
the streams. The expected time for the receipt of
realization, start and end events of streams only

depend on duration of the stream and the start time of
the action that starts the stream. Since the duration of a
stream is already known, the start of the action
depends on the activation of its actor. The activation of
the actor depends on the satisfaction of the controller.
The expected time when the controller will be satisfied
depends on the expected time when its event
composition condition is satisfied. The expected time
for the satisfaction of an event composition condition
is handled in the following way: In our model, events
can be composed using AND and OR operators.
Assume that ev1 and ev2 are two event expressions
where time(ev1) and time(ev2) give the expected times
of satisfaction of ev1 and ev2, respectively. Then, the
expected time for composite events is found in the
following way:

time(ev1ANDev2)=maximum(time(ev1), time(ev2))
time(ev1ORev2)=minimum(time(ev1), time(ev2))

where the maximum and minimum functions return the
maximum and minimum of the two values,
respectively.

3. User interactions

The low-level user interactions are interactions like
VCR functions such as play, pause, resume, forward
(fast or slow), backward (fast or slow) and skip. The
high-level user interactions are based on the low-level
operations. In our education database, each
presentation has metadata in the form of table of
contents which enables browsing of the presentation. If
the user likes to watch a presentation, the presentation
is supported with this table of contents. The table of
contents contains the headlines, chapters, sections and
subsections of the presentation.

The event-based models can handle play, pause,
resume, speed-up and slow-down operations easier
than the time-based models. The time-based models
need to update the duration and start time of all the
objects that participate in the presentation for the pre-
specified operations. In the event-based models, these
interactions only need to inform active streams. In our
case, the time is connected to actors. When an actor is
notified, it only needs to sleep for (sleeping
Time)/(|speed Of Presentation|). Speeding up or
slowing down does not add any complexity to the
presentation and only require the update of the speed
of the presentation.

The user interactions like skip or changing direction
(backwarding when playing forward or vice versa)
need to be handled carefully. When skip-forward is
performed, some events may be skipped which may
cause ignorance of future streams which depend on the
receipt of these events. The problem is solved by using
the timeline of the presentation. In the timeline object,

the expected time of the receipt of each event and the
satisfaction of each controller is known. Therefore, it is
known when events should have been received and
when the controllers should have been satisfied by
tracing the timeline. It is not always reasonable to start
the actors whose controllers are satisfied, since their
actions might have already finished. So, only the
actions which will be active at the skip point are
started from their corresponding points. The actors
whose sleep time has not expired are allowed to sleep
for the remaining time. If the direction of the
presentation is modified, then receiver conditions,
controllers and actors still need to be updated.

Presentations are usually specified in terms of
constraints or conditions. Operations such as skip and
backward increase the complexity of the specification
since constraints should be specified for all the
segments of the presentation. FLIPS [4] only provides
event-based actions and does not enable backward.
Nsync [1] does not enable backward and specification
is complex since skip operation is allowed.

In our system, the event composition and other
conditions for the backward presentation are
automatically derived from the declaration of the rules
of the forward presentation. So, the author does not
have to consider the backward presentation or
skipping, and this alleviates the declaration of the
presentation substantially. The following logic is used
for the generation of the backward presentation:
• End-start relationship. If the end of streamA

participates in starting streamB, when streamB
reaches its beginning in the backward presentation,
it will participate in backwarding streamA.

• End-end relationship. If the end of streamA
participates in ending streamB, when streamA starts
in the backward direction, it will participate in
starting streamB in the backward direction.

• Start-start(end) relationship. If the start of
streamA participates in starting (ending) streamB,
when streamA ends in the backward direction, it will
participate in ending (starting) streamB in the
backward direction.

• Realization-start(end) relationship. The
realization happens when a segment of a stream is
realized. Assume that the realization point is P and
such points are monotonically increasing within a
stream. If the realization of P in streamA participates
in starting (ending) streamB, then the realization of
(P-1) will participate in ending streamB in the
backward presentation.

• Realization events in composite events. Let
streamA.realization(P1) and streamB.realization(P2)
be realization events for streams streamA and
streamB. If (streamA.realization(P1) AND
streamB.realization(P2)) cause some actions in the

forward presentation, (streamA.realization(P1-1) OR
streamB.realization(P2-1)) will cause actions in the
backward presentation. Because the actions become
active when both of the events are realized in the
forward direction, the actions should be active as
soon as one of the events are realized in the
backward direction. If (streamA.realization(P1) OR
streamB.realization(P2)) cause some actions in the
forward presentation, (streamA.realization(P1-1)
AND streamB.realization(P2-1)) will cause actions in
the backward presentation.

4. The synchronization specification
language

The specification of a presentation is mainly composed
of two parts: the declaration of streams and the
declaration of synchronization rules.

4.1 Declaration of streams

The declaration of a stream is composed of a source
file name, an identifier to be used in rules, and start
and end points in the source stream. Each stream
declaration starts with its stream type, i.e. image, text,
audio, slide, and video.

Example. <video src=”examplesLecturer.mpg”
id=LecturerVideo StartPoint=2000 EndPoint=60000>
describes a video stream whose source is
“examplesLecturer.mpg’’ and identifier is
LecturerVideo. Start and ending points are optional.
Points indicate frame numbers for video streams.

4.2 Declaration of synchronization rules

Rules are ECA(event-condition-action)-type rules.
A rule is composed of an event expression, a condition
expression and a group of action expressions. Once the
event expression is satisfied, the condition expression
is checked. If the condition expression is true, then the
actions are performed. A synchronization rule which
has a single action has the following format:

<event eventExpression
<condition conditionExpression

<action actionExpression>>>
If a rule has more than a single action, actions are
listed consecutively.

Start rule. The start rule has start as the event
expression. This rule indicates what to perform when
the presentation starts.
<event start <condition direction=forward

<action ClassVideo.start>
<action ClassAudio.start>
<action ObjectSlides.display(1)>>>

The previous rule has the direction=forward as the
condition expression. The rule has three actions. It
indicates to start the video ClassVideo and the audio
ClassAudio and to display the first slide of
ObjectSlides. The condition expression is optional for
any rule and if the condition is not specified, the
default condition is (direction=forward).

Complex synchronization rule. The events can be
composed in an event expression to handle complex
synchronization requirements. For example, the rule,

<event ((LecturerVideo.realization(N1) and
StuVideo.realization(N2)) or ExAudio.realization(M))

<action InheritanceText.display >>,
indicates the display of the InheritanceText when
LecturerVideo and StuVideo realize the frame
numbers N1 and N2, respectively, or ExAudio
progresses M seconds. This kind of rules cannot be
handled by PREMO [3]. PREMO enables only rules
created by AND compositions. The event expression
cannot be composite in [2].

Integration of time. The time can be associated
with the actions. The rule below is about displaying
slides of ObjectSlides. The following rule shows how
to integrate time with actions.

<event ObjectSlides.realization(1)
<action ObjectSlides.display(2) begin=20s>>,

The rule indicates to display 2nd slide 20 seconds after
the display of the 1st slide. The following rules,

<event Audio.realization(M)
<action Slides.display(4)>>

and
<event ClassAudio.start

<action ObjectSlides.display(4) begin=M>>,
have different synchronization requirements. The first
rule insists to display the slide after the audio stream
has progressed M seconds. If the stream cannot be
played properly, the display will be delayed. In the
second one, the slide will be displayed M seconds after
the start of the audio whether that audio is played
properly or not. In SMIL [6], there is no way to
distinguish these rules.

Pure time-based presentation. In fact, a
presentation can be specified purely time-based
depending on the user's start event. In that case, there
will be only one rule in the presentation and will have
the following format:

<event start
<action begin= .. >
<action begin= .. > ... >.

This rule shows how easy it is to declare a presentation
depending on their start times. But this kind of rules is
not enough to handle the integrity and consistency over
the network because no constraint is specified among
the streams.

Backward presentation. The rules for backward
presentation are automatically generated. The
backward event is used to determine which streams to
start in backward presentation. The backward action
prompts to start the stream in the backward direction.

In the following rule, when both ClassVideo and
ClassAudio end, the ObjectVideo and the ObjectAudio
are started.

<event (ClassVideo.end and ClassAudio.end)
<action ObjectVideo.start>
<action ObjectAudio.start>>

This rule has only end-start relationships. The actions
will move to the event expression and the events will
move to the action part. The streams will be started in
the backward direction. The rule will be as follows:

<event (ObjectAudio.start AND ObjectVideo.start)
<condition direction=backward

<action ClassVideo.backward>
<action ClassAudio.backward>>>

5. Conclusion

In this paper, we presented a multimedia
presentation model and a language to satisfy complex
synchronization requirements with less complexity.
The model has the power of dealing with the event-
based and time-based actions while enabling low-level
user-interactions. The specification does not
complicate as user interactions are allowed. We use
this model in NetMedia[5] system.

References

[1] B. Bailey, J. Konstan, R. Cooley, and M. Dejong,
“Nsync- A Toolkit For Building Interactive Multimedia
Presentations, Proc. of ACM Multimedia, Minnesota,
Minneapolis, September 1998, pp. 257-266

[2] R. Hamakawa and J. Rekimoto, “Object Composition
and Playback Models for Handling Multimedia Data”,
Multimedia Systems, 1994, 2:26-35

[3] I. Herman, N. Corriera, D.A. Duce, D.J. Duke, G.J.
Reynolds, and J.V. Loo, “A Standard Model for Multimedia
Synchronization: Premo Synchronization Objects”,
Multimedia systems, 1998, 6(2):88-101.

[4] J. Schnepf, J. Konstan, and D. Du, “FLIPS: Flexible
Interactive Presentation Synchronization”, IEEE Selected
Areas of Communication, 1996, 14(1):114-125.

[5] Y.Song, M. Mielke, and A. Zhang, “NetMedia:
Synchronized Streaming of Multimedia Presentations in
Distributed Environment”, IEEE Int. Conf. On Multimedia
Comp. & Systems, Italy, Florence, June 1999, pp. 585-590.

[6] The cwi smil page. http://www.cwi.nl/smil.

