
H. Lin, UAH 7/25/2019

Terminal I/O (Chapter 18)

 POSIX termios

 Two terminal I/O modes

termios structure

 Getting and setting terminal attributes

 Terminal window size: struct winsize

H. Lin, UAH 7/25/2019

Overview
 What is a tty?

• An abbreviation for “terminal”, created decades ago for serial
TeleTYpewriter. A terminal is typically interactive and can be run
locally over a network, or over a serial line

• A tty device has two ends
- In case of real terminals, one end is connected to hardware, such as

monitor, serial ports, and the other end is connected to a program, such
as a shell,

- In case of pseudo terminal, (ptys), both ends are connected to software,
with one end simulates the hardware, telnet, ssh,

 The tty interface:
• BSD sgtty
• System V termio
• POSIX termios: supersedes both sgtty and termio

 Complexity of terminal system: Terminal i/o for many things
• Real terminals
• Hardwired lines between computers, modems, printers, etc.

H. Lin, UAH

What is a Terminal?

 A terminal consists of a screen and keyboard that one uses to
communicate remotely with a host computer. The program executes on
the host computer, and the results display on the screen

 Text terminal
• Text terminals are also called dumb terminals (think terminal)
• For a text terminal, a 2-way flow of information between the computer and

the terminal takes place over the cable that connects them together.
• This flow is in bytes (such as ASCII) where each byte usually represents a

printable character. Bytes typed at the keyboard go to the computer and
most bytes from the computer are displayed on the terminal screen

• Mid 1970’s and mid 1980’s, we used text terminals to communicate with
the super computers. The cable connected the terminal to the computer. It
was called terminal because it was located at the terminal end of the cable.

 Monitor+keyboard is not a terminal
• A text terminal is often connected to a serial port via long cable, no mice,

has built in not so good graphic card
• A monitor is often right next to the computer,

7/25/2019

H. Lin, UAH

Two Modes for Terminal I/O Input Processing

 Canonical mode (cooked mode)

• the default terminal I/O mode

• Provides a limited line editor inside the device driver and
sends edited input to the application one line at a time

• Most UNIX systems implement all the canonical processing
in a module called the Terminal Line Discipline

• i.e: Standard input and output

Non-canonical mode (raw mode)

• The input characters are not assembled into lines, the data
is passed to the application as it is received with no changes
made

• i.e: vi editor, such special characters will not be processed
by the terminal driver

7/25/2019

H. Lin, UAH

Terminal I/O Input Processing

7/25/2019

read/write

functions

Terminal line

discipline

User

Process

Actual

device

Terminal

device driver

H. Lin, UAH 7/25/2019

Terminal Operations
 All terminal device characteristics are contained in struct termios

defined in <termios.h>

struct termios {

tcflag_t c_iflag; // input mode flags

tcflag_t c_oflag; // output mode flags

tcflag_t c_cflag; // control mode flags (device)

tcflag_t c_lfalg; // local mode flags

cc_t c_cc[NCCS]; // control characters

}

 Isatty: to see if a file descriptor is a tty
int isatty(int fd); Return 1 if true, 0 on false

 ttyname:get the name of terminal associated w/ the fd
char* ttyname(int fd);

- Return NULL on error or the file descriptor is not associated with a tty

 ctermid: get controlling terminal name
• char* name = ctermid(NULL); or

• char s[L_ctermid]; ctermid(s);

H. Lin, UAH

 Input flags: c_iflag
Control the input of characters by the
terminal device driver

- strip 8th bit (parity bit) parity checking
(the 8th bit is for parity)

 Output flags: c_oflag
Control the driver output , such as map
newline (\n) to CR/LF, etc.

 Control flags: c_cflag
Affects RS-232 serial line, stop bits, etc.

 Local flags: c_lfag
Affect the interface b/w the driver and
the user, such as

- echo on or off,

- enable terminal-generated signals,

- job control

 c_cc array
• Array contains all the special

characters that can be changed,
typically 15~20

• c_cc is large enough to hold each
special character and is typically an
unsigned char

7/25/2019

Process

Input Output

tty driver

c_lflag

Input handling

c_iflag, c_cc

output handling

c_oflag

Serial card driver

c_cflag

Serial card

User

Space

Kernel

Space

Figure 18.3~18.6 on page 635 lists different flags

H. Lin, UAH 7/25/2019

 Figure 18.7 on p677: List of functions for these flags, here are a few:

• tcgetattr: fetch attributes

• tcsetattr: set attributes

• tcdrain: wait for all output to be transmitted

• tcflush: flush pending input/output

 Figure 18.9 on p678 lists the special input characters defined by POSIX.1

• Among the special input characters, CR (\r) and NL(\n) can not be changed.

• All others can be changed to whatever we like, or to be disabled

 Getting and setting terminal attributes

#include <termios.h>

int tcgetattr(int fd, struct termios *termptr);

int tcsetattr(int fd, int opt, const struct termios *termptr);

Both return 0 if OK, -1 on error

• opt: specify when the new terminal attributes to take effect

- TCSANOW: immediately

- TCSADRAIN: changed after all the output has been transmitted

- TCSAFLUSH: changed after all the output has been transmitted, and all the unread input is

discarded

H. Lin, UAH

Special Characters

Character c_cc subscript Typical value Description

EOL VEOL End of Line

EOF VEOF ^D End of file

NL (can not changed) \n New Line

INTR VINTR ^C Interrupt signal

ERASE VERASE ^H Backspace on erase

QUIT VQUIT ^\ Quit signal

WERASE VWERASE ^W Erase a word

KILL VKILL ^U Erase line

7/25/2019

• We can disable some of these by setting the value of c_cc array to the

value of _PC_VDISABLE. We can get this value by fpathconf

long vdisable = fpathconf(STDIN_FILENO,

_PC_VDISABLE)

cc[VQUIT]=vdisable

• Disable ctrl-c is different from ignoral INTR (in signal interrupt)

H. Lin, UAH

Modify Terminal Attributes
#include "cs590.h“ // textbook, figure18.10

#include <termios.h>

void err_quit(char* msg){ printf("%s\n", msg); return 1;}

int main(void){

struct termios term;

long vdisable;

if (isatty(0) == 0)

err_quit(“stdin is not a terminal device");

if ((vdisable = fpathconf(0, _PC_VDISABLE)) < 0)

err_quit("_POSIX_VDISABLE not in effect");

if (tcgetattr(0, &term) < 0) /* fetch tty state */

perror("tcgetattr error");

term.c_cc[VINTR] = vdisable; //disable INTR character

term.c_cc[VEOF] = 2; // EOF is ^B Check ASCII table

if (tcsetattr(0, TCSAFLUSH, &term) < 0)

perror("tcsetattr error");

exit(0);

} // now ctrl-c will not be able to generate SIGINT
7/25/2019

H. Lin, UAH

Terminal Option Flags (§18.5)
 c_cflag:

• CSIZE: a mask that specifies the number of bits per byte for both transmission and
reception. This size does not include the parity bit, it any. The values can be CS5,
CS6, CS7, CS8

- See example Fig 18.11 on page 684

• PARENB: If set, parity generation is enabled for output char, and
parity checking is performed on incoming char

• PARODD: If set, odd parity; otherwise, even parity

 c_lflag:

• ECHO: If set, input characters are echoed back to the terminal device

• ECHONL: If set and ICANON is set, the NL (new line) character is echoed
regardless if ECHO is set or not

• ICANON: If set, canonical mode is in effect

 c_iflag

• ISTRIP: If set, valid input bytes are stripped to 7 bits, otherwise, all 8 bits
are processed

 ETC…

7/25/2019

H. Lin, UAH

#include “cs590.h“ // make sure <termios.h> is there

int main(void){

struct termios term;

if (tcgetattr(STDIN_FILENO, &term) < 0) perror("tcgetattr error");

switch (term.c_cflag & CSIZE) {

case CS5:

printf("5 bits/byte\n"); break;

case CS6:

printf("6 bits/byte\n"); break;

case CS7:

printf("7 bits/byte\n"); break;

case CS8:

printf("8 bits/byte\n"); break;

default:

printf("unknown bits/byte\n");

}

term.c_cflag &= ~CSIZE; /* zero out the bits */

term.c_cflag |= CS8; /* set 8 bits/byte */

if (tcsetattr(STDIN_FILENO, TCSANOW, &term) < 0)

perror("tcsetattr error");

exit(0);

} 7/25/2019

H. Lin, UAH 7/25/2019

/* readpass.c - Reads a password without displaying it on the

terminal

*/

#include “cs590.h”

int main(void) {

struct termios ts, ots;

char passbuf[1024];

/* get and save current termios settings */

tcgetattr(0, &ts);

ots = ts;

/* change and set new termios settings */

ts.c_lflag &= ~ECHO;

ts.c_lflag |= ECHONL;

tcsetattr(0, TCSAFLUSH, &ts);

H. Lin, UAH

/* check that the settings took effect */

tcgetattr(0, &ts);

if (ts.c_lflag & ECHO) {

fprintf(stderr, "Failed to turn off echo\n");

tcsetattr(0, TCSANOW, &ots);

exit(1);

}

/* get and print the password */

printf("enter password: "); fflush(stdout);

fgets(passbuf, 1024, stdin);

printf("read password: %s", passbuf);

/* there was a terminating \n in passbuf */

/* restore old termios settings */

tcsetattr(0, TCSANOW, &ots);

exit(0);

}

7/25/2019

H. Lin, UAH 7/25/2019

 Baud rate function

• Baud rate is bits per second: B2400, B9600, B19200, B38400, etc.

• Get I/O Baud rate

speed_t cfgetipeed(const struct termios *termptr);

speed_t cfgetospeed(const struct termios *termptr);

- Return baud rate value

• Set I/O Baud rate

int cfsetispeed(struct termios *termptr, speed_t spd);

int cfsetospeed(struct termios *termptr,speed_t spd);

- Return 0 if OK, -1 on error

 Line control functions: see p693

• tcdrain (int fd); //wait for all output to be transmitted

• tcflow(int fd, int action); // control the flow(i/o) with
action

• tcflush(int fd, int queue);

• tcsendbreak(int fd, int duration); //transmit a series of
zero bits for a specified duration

H. Lin, UAH 7/25/2019

H. Lin, UAH

Canonical mode

 Provides a limited line editor inside the device driver
and sends edited input to the application one line at a
time (assemble the bytes received into lines) (such as
erase, etc.)

 Input is made available line by line (NL, EOL,etc.)

We issue a read, the terminal driver returns when a line has
been entered. Several conditions cause the read to return

• When the requested number of bytes has been read

• When the line delimiter is encountered (NL, EOF, EOL, EOL2)

• When maximum line length is reached (4096 characters)

• When a signal is caught, but read is not automatically
restarted

7/25/2019

H. Lin, UAH

Non-Canonical Mode

 Specified by turning off the ICANON flag in local flag, c_lflag
of termios

 Input data in non-canonical mode is not assembled into lines

• Input is available immediately, no input processing is
performed

• Some characters, ERASE, KILL, EOF, NL, EOL, EOL2, CR, REPRINT, STATUS,
and WERASE are not processed

 Two variable values (MIN, TIME) in the c_cc array are used to
determine how to process the bytes received, what input to
return to caller
• MIN: specifies the minimum number of bytes before a read returns.

• TIME specifies the number of tenths of a second to wait for data to arrive

Our terminal: min=1, time=0

7/25/2019

H. Lin, UAH

Four Cases for “read”

MIN>0 MIN=0

TIME>0

(10th of
second)

A

Read returns MIN bytes
before timer expires

Read returns[1,MIN) if time
expires

(TIME=interbyte timer)

C

Read return [1, nbytes] before
timer expires

Read returns 0 if timer expires

TIME=read timer

TIME=0

B (blocking read)

read returns [MIN, nbytes]
when available

D (polling read)

Read returns [0, nbytes]
immediately

7/25/2019

H. Lin, UAH

Terminal Window Size
 Most UNIX systems provide a way to keep track of the current terminal

window size and to have the kernel notify the foreground process group
when the size changes
struct winsize{

unsigned short ws_row;

unsigned short ws_col;

unsigned short ws_xpixel //not in use for Linux;

unsigned short ws_ypixel //not in use for Linux

};

 We can fetch the current value of the structure using an ioctl with flag
TIOCGWINSZ

 We can store a new value of structure in kernel using ioctl with
TIOCSWINSZ, if the new value differs from the current value stored in the
kernel, a SIGWINCH signal is sent to the foreground process group (by
default, the signal is ignored)

 Interpretation of the values in the structure is the responsibility of the caller

7/25/2019

H. Lin, UAH 7/25/2019

#include "cs590.h"

void pr_winsize(int fd){

struct winsize size;

if (ioctl(fd, TIOCGWINSZ, (char *) &size) < 0)

perror("TIOCGWINSZ error");

printf("%d rows, %d columns\n", size.ws_row, size.ws_col);

}

static void sig_winsz(int signo){

printf("SIGWINCH received\n");

pr_winsize(STDIN_FILENO);

}

int main(void){

if (isatty(STDIN_FILENO) == 0) exit(1);

if (signal(SIGWINCH, sig_winsz) == SIG_ERR)

perror("signal error");

pr_winsize(STDIN_FILENO); /* print initial size */

for (; ;) /* and sleep forever */

pause();

}

