
Amy Lin, UAH 6/18/2019

Process Control (Chapter 8)

Process Identifiers

Process Life Cycle

• fork & vfork

• Wait & waitpid

Race condition

exec functions

system functions

Amy Lin, UAH 6/18/2019

Every process has a unique process identifier (PID)

PIDs are non-negative integers

There are two special processes
- 0 :scheduler, a system process

- 1 : init, the parent of all other UNIX processes on a
Linux/Unix system

Relevant C Functions:
pid_t getpid(); // process ID

pid_t getppid(); // parent PID

uid_t getuid(); // real user ID of proc

uid_t geteuid() // effective uid of proc

gid_t getgid() // group ID

gid_t getegid(); // effective group ID

Process IDentifiers

Amy Lin, UAH

Shell command: “ps”, “top”

Shell command “ps”:

• Report a snapshot of the current processes
• To see every process on the system using standard syntax (UNIX

System V)

ps -e

ps -ef
ps -eF
ps -ely

• To see every process on the system using BSD syntax:

ps ax or ps axu

 a = show processes for all users

 u = display the process's user/owner

 x = show all running processes

Shell command “top”

check man page for detail

6/18/2019

Amy Lin, UAH

Process State Codes
Here are the different values that the s, stat and state output specifiers
(header "STAT" or "S") displayed to describe the state of a process.

D Uninterruptible sleep (usually IO)

R Running or runnable (on run queue)

S Interruptible sleep (waiting for an event to complete)

T Stopped, either by a job control signal or because it is being traced.

W paging (not valid since the 2.6.xx kernel)

X dead (should never be seen)

Z Defunct ("zombie") process, terminated but not reaped by its parent.

For BSD formats and when the stat keyword is used, additional characters
may be displayed:

< high-priority (not nice to other users)

N low-priority (nice to other users)

L has pages locked into memory (for real-time and custom IO)

s is a session leader

l is multi-threaded (using CLONE_THREAD, like NPTL pthreads do)

+ is in the foreground process group

Google “output fields of the ps command in UNIX”

6/18/2019

Amy Lin, UAH

Life Cycle of a UNIX/Linux Process

On UNIX, process creation, execution and termination
are done by a set of four system calls
• fork, wait, exec, & exit

 fork system call
A process is created in UNIX with the fork() system call

• It creates a duplicate process of the calling process, the duplicated
process is the child process of the calling one

• The calling process is called the parent

• A parent process can have many child processes, but a child process
can have only one parent process

• The child process starts right after the call of fork. It is responsible to
do the work, such as the command called through command line

 wait system call
• Suspend the parent process after the fork system call

Amy Lin, UAH

Life Cycle of a UNIX Process (Cont’d)

The exec system call

• Real execution is done by the child process through the
exec system call

• The child process calls exec with the name of the

command as its argument

• The kernel loads this new program into memory in place

of the shell that called it (the child process) and

becomes the child process (hold its PID) and starts

executing.

The exit system call

• Called when the child process terminates. It sends a signal

(SIGCHLD) to its parent,

• The parent wakes up when it receives the SIGCHILD signal,
and you get your prompt back

Amy Lin, UAH

Login

PID=1279

PPID=1

PPID=1279

Bash:PID=1579

PPID=1579

PID=2816

PPID=1579

vi:PID=2816

PPID=1279

Bash: PID=1579

bash

PID=1579

PPID=1279

exit() and sends signal to its

parent: PID 1579

wait()

(sleep)

fork()

exec() takes “vi”

as argument

PID=1

the init process

bash

Start a user program

“vi” in bash (pid 1579)

exec()

SIGCHLD

Amy Lin, UAH

Process Termination
Normal termination

• Return from “main”

• Calling exit (glibc function)

• Calling _exit or _Exit (system call)

Control-Key(s)
• Ctrl-C: send SIGINT (interrupt) signal

• Ctrl-\: send SIGQUIT signal

- stronger than ctrl-C, used when ctrl-C does not work

cmd kill with the following arguments and signals
• kill 12345 # PID=12345 how to get the pid?), send default signal

• killall foo # Process name foo, might have multiple “foo” running

• send signal to the running process: such as kill -9 12345

- -TERM: termination, by default (15)

- -QUIT: quit (3); -KILL (9)

- -KILL: kill -9 12345

- -s signal pid

kill –l: List all the available signals on the system

Amy Lin, UAH

“fork” Function-Create a New Process
Every process except system processes like “swapper”, a scheduler process,
and the init process are started via a function call named fork

pid_t fork(void);

Creates a “copy” of the current process

It returns twice
- 0: to the child

- Positive Int (PID of the child): to the parent

- -1 on error

Reasons for fork to fail
• Too many processes on the system

• Too many processes for the RUID (there is a limit CHILD_MAX)

After fork, both the child and parent continue executing
concurrently (racing condition can happen)

6/18/2019

Amy Lin, UAH 6/18/2019

#include “../cs590.h“ //fork.c
int glob = 6;
char buf[] = “a write to stdout\n";

int main(void){
int var = 88;
pid_t pid;

if (write(1, buf, sizeof(buf)-1) != sizeof(buf)-1)
perror("write error");

printf("before fork, var=%d, glob=%d\n", var, glob);
//fflush(stdout);
if ((pid = fork()) < 0) {

perror("fork error");
} else if (pid == 0) { /* child */

glob++; /* modify variables */
var++;
printf(“child pid=%d\n”, getpid());

} else {
sleep(2); /* parent */

}
printf("pid = %d, glob = %d, var = %d\n", getpid(), glob, var);
exit(0);

}

./fork
a write to stdout
before fork, var=88, glob=6
pid = 30825, glob = 7, var = 89
pid = 30824, glob = 6, var = 88

./fork >output, output has:
a write to stdout
before fork, var=88, glob=6
pid = 30979, glob = 7, var = 89
before fork, var=88, glob=6
pid = 30978, glob = 6, var = 88

Amy Lin, UAH 6/18/2019

 Both the parent and the child continue executing the instructions that
follows the call to fork. The child is a copy of the parent

• Child gets a copy of the parent’s data space, heap, and stack.

• Child and parent do not share these memory. Hence the printf call display the
values of their own

• They share the text segment

 “write” is unbuffered , we only got one line of output

printf is buffered output, when print to terminal, it’s line buffered, so
by the time creating child process, the buffer has been flushed out.

• When redirecting the output to a file, printf will be fully buffered output, so
when the child is forked, the un-empty buffer is also copied to the child. So the
child process also get the copy of the printf line

• To avoid the buffer I/O copied to the child, call fflush before fork call

 The parent sleep(2) sleep for 2 seconds to make sure the child finishes
first, but this is not guaranteed.

 Possible uses for fork
• Concurrency – a process may want to duplicate itself so that the parent and child

can each execute different sections of code at the same time

• Program execution – a process may want to execute a different program with exec

Amy Lin, UAH

File Sharing
 Parent and child share a file table entry for every open descriptor

 Normally, either (1) the parent waits for the child to complete, and the file
descriptors are not an issue or (2) the parent and the child go separate ways, the
parent closes the no need descriptors, so does the child

 Properties copied from parent to child
• RUID RGID EUID EGID Supplementary group IDs
• Process group ID
• Session ID
• Controlling terminal
• SUID/SGID flags
• Current working directory
• Root directory
• File mode creation mask
• Signal mask and dispositions
• Close-on-exec flag for any open file descriptors
• Environment
• Attached shared memory segments
• Resource limits

 Differences b/w parent & child
• Return value from fork

• PID & Parent PID

• Child has tms_utime tms_stime, tms_cutime, and tms_cstime set to 0

• File locks set by parent are not inherited

• Pending alarms are cleared for the child

• Pending signals for the child is set to the empty set

6/18/2019

Amy Lin, UAH

“vfork” Function

From man page: vfork – Create a child process and block
parent

Intends to create a new process when the purpose of
the new process is to exec a new program

 vfork creates the new process like fork, but until it
calls either exec or exit, the child runs in the address
space of the parent

 vfork guarantees the child runs first, until the child
calls exec or exit. The parent is put to sleep by the kernel
until the child calls either exec or exit.

6/18/2019

Amy Lin, UAH 6/18/2019

#include “../cs590.h"

int glob = 6;

int main(void){

int var;

pid_t pid;

var = 88;

printf("before vfork\n");

if ((pid = vfork()) < 0) {

perror("fork error");

exit (1);

} else if (pid == 0) { /* child */

glob++; var+; /* modify variables */

printf(“child: pid =%d,glob=%d,var=%d\n", getpid(), glob, var);

_exit(0); // child terminates here

}

printf("pid=%d, glob=%d,var =%d\n",getpid(), glob, var);

exit(0);

}

Output of the program
before vfork

child:pid = 3642, glob = 7, var = 89

pid = 3641, glob = 7, var = 89

• The incrementing of the variables done by the child changes the values in the parent;

• the child finished first

Amy Lin, UAH 6/18/2019

Normal process termination:
• Calling return from main

• Calling exit(int status)
- Will close all the standard I/O stream

• Calling _exit(int status) or _Exit(int status)
- Terminate the process without running exit handlers and signal

handlers

Abnormal termination
• Calling abort

• Receiving certain signals

Argument to the exit functions is the exit status which
can be retrieved by the parent

“exit” Functions

Amy Lin, UAH

Special Cases

Parent terminates before child – Orphaned process

- Parent process dies/exits before child process ends

- Init/systemd process is the parent of all orphaned processes

When a process terminates, the kernel goes through all the active processes to
see if the terminating process is the parent of any process that still exists. If
so, the parent process ID of the active child process is change to be 1

Zombie or defunct process

- A process that has terminated, but whose parent has not yet
waited for it, the process becomes a zombie

- Zombie processes can be seen in "ps" listings occasionally as “Z” or
<defunct>

whenever a child terminates, init calls one of the wait
functions to fetch the termination status. So orphaned
process will not become zombie

6/18/2019

Amy Lin, UAH 6/18/2019

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int opts);

Returns PID of a terminated child process, -1 on error

statloc: a pointer to integer stores the termination status of
the child process. Use NULL if don’t care about the status

The following macros can be used to decipher the status:

- WIFEXITED(status)

- true for a child terminated normally

- Can call WEXITSTATUS(status) to return the exit status

- WIFSIGNALED(status)

- true for a child terminated abnormally due to a signal

- Call WTERMSIG(status) to give the signal number

- WIFSTOPPED(status)

- true if a child is currently stopped

- Call WSTOPSIG(status) to return signal number

wait & waitpid

Amy Lin, UAH 6/18/2019

pid_t wait(int *statloc);

pid_t waitpid(pid_t pid, int *statloc, int opts);

opts constants (can be zero)
- WNOHANG – do not block

- WUNTRACED – status of stopped job

- WCONTINUED – return if a stopped child has resumed

pid arg:

• pid =-1 – wait for any child process (like wait)

• pid >0 – wait for child whose PID=pid

• Pid =0 wait for any child whose process group ID = caller’s

• pid <-1: waits for any child whose process group ID equals to
|pid|

wait & waitpid

Amy Lin, UAH

wait vs. waitpid

wait(&status) waitpid(-1,&status,0)

Differences

• The wait function can block the caller until a child process
terminates, whereas waitpid has an option that prevents it from
blocking.

• The waitpid function doesn't wait for the child that terminates
first; it has a number of options that control which process it waits
for.

Advantage of waitpid over wait

• waitpid allows parent process to wait for one particular process

• waitpid has a nonblocking option

• waitpid supports job control with the options: WUNTRACED and
WCONTINUED

6/18/2019

Amy Lin, UAH 6/18/2019

// figure 8.8 on page 225

#include "cs590.h"

#include <sys/wait.h>

int main(void){

pid_t pid;

printf("my pid is %d\n", getpid());

if ((pid = fork()) < 0) {

perror("fork error");

}

else if (pid == 0) /* first child */

{

printf("child 1, pid=%d, ppid=%d\n", getpid(), getppid());

if ((pid = fork()) < 0)

perror("fork error");

else if (pid > 0){

printf("parent of 2nd child, the 1st child: pid=%d exit\n", getpid());

exit(0);

}

sleep(2);

printf("child 2 pid=%d parent pid = %d\n", getpid(), getppid());

exit(0);

}

// wait for the first child to finish

if (waitpid(pid, NULL, 0) != pid)

perror("waitpid error");

printf("pid=%d is done\n", getpid());

exit(0);

}

my pid is 12041

child 1, pid=12042, ppid=12041

parent of 2nd child, the 1st child: pid=12042 exit

pid=12041 is done

hlin@linux:~/cs590/chapter_8> child 2 pid=12043

parent pid = 1

Amy Lin, UAH 6/18/2019

A race condition occurs when multiple processes are trying to do
something with a shared resource, the final outcome depends on the
order in which the processes run

 These conditions are resolved generally with signaling and
synchronization mechanisms to be discussed in later chapters

#include "cs590.h"

static void pr_char(char *str){

char *ptr; int c;

setbuf(stdout, NULL) /* set unbuffered */

for (ptr = str; (c = *ptr++) != 0;)

putc(c, stdout);}

int main(void){

pid_t pid;

if ((pid = fork()) < 0) {

perror("fork error");

} else if (pid == 0) {

pr_char("output from child\n");

} else {

pr_char("output from parent\n");

}

exit(0);

}

Race conditions

Possible outputs:

output from parent
output from child

output foruotmp upta rfernotm
child

output from pareontu
tput from child

The result is undetermined, see the

result on page 247

Amy Lin, UAH 6/18/2019

 There are 6 variation of exec functions

 exec functions allow a process to begin running a new program

When a process calls one of the exec functions, the process is completely
replaced by the new program, and the PID is not changed, no new
process created

int execl(const char *pathname, const char* arg0, … /*(char*) 0*/);

int execv(const char *pathname, char* const argv[]);

int execle(const char *pathname, const char* arg0, … /*(char*) 0, char* const envp[] */);

int execve(const char *pathname, char* const argv[], char* const envp[]);

int execlp(const char *filename, const char* arg0, … /*(char*) 0*/);

int execvp(const char *filename, char* const argv[]);
Among these 6 functions

l – list arguments individually, char* arg0, char* arg1, …, (char*) 0

v – arguments are in a array, argv[]

e – allow you to specify an environment pointer

p – will search the path for the executable file based on PATH if filename contains no “/”

 All return -1 on error and no return for success

See page 249 (or man page) for properties inherited after exec

“exec” Functions

Amy Lin, UAH 6/18/2019

#include "cs590.h“ // exec.c

char *env_init[] = { "USER=unknown", "PATH=/tmp", NULL };

int main(void){

pid_t pid;

if ((pid = fork()) < 0) { perror("fork error");}

else if (pid == 0) { /* specify pathname, specify environment */

if (execle("/home/csuser/hlin/cs590/echoall", "echoall",

"myarg1","MY ARG2", (char *)0, env_init) < 0)

perror("execle error");

}

if (waitpid(pid, NULL, 0) < 0)

perror("wait error");

if ((pid = fork()) < 0) {

perror("fork error");

}

else if (pid == 0) {

/* specify filename, inherit environment */

if (execlp("echoall", "echoall", "only 1 arg", (char *)0) < 0)

perror("execlp error");

}

exit(0);

}

See the results on page 255

Amy Lin, UAH 6/18/2019

int system (const char* cmdstring);

System function provides an easy way to execute a
command string from within a program

ex: system(“date >file”);

System is implemented by calling fork, exec, and
waitpid

Return value:

• -1 if fork fails or waitpid returns error other than EINTR

• 127 if exec fails (i.e. shell can’t be executed)

• Exit status: if all functions succeed, the value is the
termination status of shell

“system” Function

Amy Lin, UAH 6/18/2019

//Figure 8.22 on page 266

int system(const char *cmdstring) {

pid_t pid;

int status;

if (cmdstring == NULL)

return(1);

if ((pid = fork()) < 0) {

status = -1; /* probably out of processes */

} else if (pid == 0) { /* child */

execl("/bin/sh", "sh", "-c", cmdstring, (char *)0);

_exit(127); /* execl error */

} else { /* parent */

while (waitpid(pid, &status, 0) < 0) {

if (errno != EINTR) {

status = -1; /* error other than EINTR from waitpid() */

break;

}

}

}

return(status);

}

Amy Lin, UAH

Identifying the race conditions (problems)
int main(void){

int id, status;

if ((pid=fork()) < 0) {

perror("for error");

exit (1);

}

if (pid == 0) {

if ((pid=fork()) < 0){

perror("for error");

exit (1);

}

else if (pid == 0){

printf("I am a child, my parent is %d\n", getppid());

}

else {

return 0; // did not wait for its child

}

}

else {

printf("I am the parent, my pid is %d\n", getpid());

wait(&status);

}

return 0;

}

6/18/2019

