
2/3/2020Slide #1

Overview

Regular expressions (regex) and
pattern matching/searching

The “grep” utility

2/3/2020Slide #2

Regular Expression (regex)

regex is a pattern that describes a set of string

 A pattern of characters used to match the same
characters in a search

 Sometimes enclosed by two “/” , such as: /regex/

• ex: /ring/, ~ “ring”, “spring”, “ringing”, etc.

 Used in many utilities: vi, emacs, grep, sed, awk, etc.

 Supported in many languages: perl,python,php,java, etc.

 Meta characters

 Metacharacters are characters that represent something other
than themselves

 Shell metacharacters used by the shell program

 Regular expression metacharacters are evaluated by the program
performing the regular expression matching, such as

• vi, emacs,grep, perl, sed, awk, etc.

2/3/2020Slide #3

regex Metacharacters
 *

Matches zero or more of the preceding character

 .

matches any single character

 ^

beginning of the line or string

 $

End of line

 \

escape the metacharacters so it can be what it is.

 []

Any single character in the set, i.e. [A-Z]

 [^]

Any character NOT in the set, i.e. [^A-Z], or [^ab]

 ^[^]

Lines beginning with any character not in the bracket

2/3/2020Slide #4

Examples

 Abc*

Abc345d, AbBBB, Ab (Note: different from * in ls a*)

 .*

Zero or more of any character, will match any patterns

 [a-zA-Z] <==> [[:alpha:]]

Matches any letter, low or upper case

 [^0-9]

Matches any character which is NOT a number

 end$

Matches lines ending with “end”

 ^start

Matches lines starting with “start”

 \.$

Matches line ending with “.”

 ^ *$

Matches blank lines

2/3/2020Slide #5

grep

 grep

 Searches and displays lines which match a pattern in files

 Free version: GNU grep

grep <option flags> pattern filename(s)

 grep does not change the content of the file(s) being searched

 Common flags/options
 -n: display the line number where the match is found

 -c: display the number of lines containing the search pattern

 -r: recursively read all files under each directory from current
directory,

 -i: ignore the case of letters

 -v: prints all lines not containing the pattern (can be used to
remove certain lines in a file)

 -l: print out only the name of files in which the pattern is
matched

 -w: find pattern only if it is a word, not part of a word

 For more options, check online with man grep

2/3/2020Slide #6

2/3/2020Slide #7

Examples
 grep “NW” datafile.txt

 Displays lines containing “cs390” in datafile.txt

 grep “cs390” *

 Displays the files and lines containing “cs390” in current directory

 grep –r “cs390” .

 Search for files containing “cs390” from the current directory

 grep “[0-9]” textfile

 Displays lines containing numbers in the textfile

 grep “[^a-zA-Z]” datafile.txt

 Displays lines containing none letters in datafile.txt

 Same when with “-i” option: grep –i “[^a-z]” input.txt

 grep “^[0-9]” datafile.txt

 Displays lines which start with a digit

 grep “^n” datafile.txt

 Display lines starting with n

 grep “4$” datafile.txt

 Display lines ending with 4

2/3/2020Slide #8

“grep” and pipe
 “grep” can take input (data stream) from a pipe

 ls -l | grep ^d

• The output of the ls command is piped to grep

• all lines starting with “d” are printed (all the directories are displayed to
the screen)

 who | grep hlin

• The name list of the current logon users are piped to grep

• A way to check if one particular person is logon on

 cat file.txt | grep –w computer 

grep –w computer file.txt

find . –name “*.php” | xargs grep function

 Search from the current directory for files ending with “.php”,
then the grep will search these files for lines containing
“function”

??: find . –name *.php | grep function

2/3/2020Slide #9

find vs. grep

Both used to search for files but with different

constraints

 find

• search criterions on properties of the “files”, such as

type, size, permissions, pattern of the file name,

etc.

 grep

• Search criterions on content of the files, looking for

patterns in the content of files, you will get

– What: Files containing the search pattern

– Where: the lines containing the search pattern

2/3/2020Slide #10

Inverting Search with “-v”

 Show all unmatched lines

 Can be useful when you want to remove lines which

contain certain pattern

grep –v “cs390” input.txt > input_new.txt

 Display all the lines not containing “cs390”

 Redirect the stdout to a new file “input_new.txt”

 input_new.txt contains only the lines without cs390

 There are other ways to accomplish this (sed and awk)

 Questions

 how to remove comments starting with “//” from a cpp file?

 How to remove comments from a shell script (lines in shell script

start with #)?

 How to remove empty/blank lines from a file ?

2/3/2020Slide #11

Variants of grep: egrep & fgrep

fgrep  grep -F

 “Fixed” String grep

 Treat all characters as literals, i.e., not
metacharacters

 Examples:

• fgrep “***” *.txt; # must use DOUBLE quotes

– Displays all the lines containing three “*”

• fgrep ‘3.’ datafile.txt

– Displays all the lines containing “3.”

– Will remove all the commenting lines

egrep grep –E

 grep with extended regex, more regular expression
meta-character support

2/3/2020Slide #12

New Metacharacters

+

Matches one or more of the character(s) preceding

“+”

? Matches zero or one of the preceding character

a|b  Logical “or”

\(..\)  Matches the group

x\{n\}

 Number of repeat of the preceding pattern x

2/3/2020Slide #13

Examples
 2\.?[0-9]

 Matches lines containing a 2 followed by zero or one period,
and followed by a number

 Matched: 2.5, 25, 29, 2.3

 Tal+ (different from Tal*)

 Tal, Talk, Talllll

 Monday|Wednesday

 Lines containing either Monday or Wednesday

 (no)+

 Matches no, nono, nononono, etc

 (01)+

 Matches any binary number of 0101010101…

 a\{5\}

 Matches at least 5 repeated “a”

2/3/2020Slide #14

More Examples for “egrep”

 S(h|u)

 Matches Sharon, Suan

 Sh|u

 Matches lines containing “Sh” or “u”

 [A-Z]…[0-9]

 Prints lines containing a 5-characters set starting with a
capital letter followed by three of any character, and
ending with a digit number

 (Susan|Jean) Doe

 Prints lines containing Susan Doe or Jean Doe

 egrep –v ‘Mary’ file

 Prints lines NOT containing Mary

2/3/2020Slide #15

More Examples for “grep”
 grep –n “5\..” datafile.txt

 Print line containing number 5 followed by a period and any single

character (possible number-indexed lines)

 grep –i “[a-z]\{9\}” datafile.txt

 Print lines containing at least 9 consecutive letters, lower or upper case

 grep foo *

 Search all the files in the current directory, display the file names and the

lines containing pattern “foo”

 grep –r foo .

 Search all the files in the current directory recursively for pattern “foo”

 grep -w “north” datafile.txt

 Print lines containing word north (not northwest)

 grep “^[A-Z]” /etc/passwd

 print the line beginning with a capital letter

 grep “^[A-Za-z]” filename

 Print lines beginning with a letter

2/3/2020Slide #16

A Note about “range” expression
Within a bracket expression, a range expression

consists of two characters separated by a hyphen.

 the range is determined using the locale’s collating
sequence and character set

 For C locale, [a-d]  [abcd]

 Others: If locales sort characters in dictionary order, [a-d]
[aBbCcDd]

 You can use “locale” to see how the system locale is set.

Work around with predefined bracket expressions

 man page for grep, the regular expression section

[:alnum:] 0-9 and a-zA-Z grep ‘[[:alnum:]]’ file

[:alpha:] a-zA-Z grep ‘[[:alpha:]]’ file

[:digit:] 0-9 grep ‘[[:digit:]]’ file

[:upper:] A-Z grep ‘[[:upper:]]’ file

[:lower:] a-z grep ‘[[:lower:]]’ file

