
2/26/2020slide #1

UNIX Process
 Program vs. Process (Process Program)

 A program is a set of machine code instructions and data stored in an

executable image on disk, not in memory yet

 A process is a program in action / execution, i.e. a running program,

the program is loaded in memory

 UNIX is a multiple processes (multi-users) Operating System

 Many processes are kept in memory at the same time

 Each individual process runs in its own virtual address space

 Operating system (the kernel) manages all the processes, scheduling

the processes to share the resources, etc.

• A scheduler uses a number of scheduling strategies to ensure fairness,

such as deciding which process to run next

 Each process has a unique ID, called Process ID (PID)

 Each process also has one parent process, PPID

2/26/2020slide #2

ps - Get a Snapshot of all the

Current Active Processes
 Without any options, it gives the processes running in the

shell where the command (ps) is being executed
PID TTY TIME CMD

10289 pts/4 00:00:00 bash

10520 pts/4 00:00:00 ps

 with –f: ps –f

UID PID PPID C STIME TTY TIME CMD

hlin 10289 10288 0 14:06 pts/4 00:00:00 -bash

hlin 10526 10289 0 14:22 pts/4 00:00:00 ps -f

 See EVERY process on the system

 using Unix (System V)-style (with short dash)

• ps –e; ps –ef; ps –A;

 using BSD-style (without the short dash)

• ps aux; ps ax

2/26/2020slide #3

Process Tree with “pstree”

 Shows running processes as a tree with the parent-child relationship

init─┬─accounts-daemon───2*[{accounts-daemon}]

├─acpid

├─at-spi-bus-laun─┬─dbus-daemon

│ └─3*[{at-spi-bus-laun}]

├─avahi-daemon───avahi-daemon

├─colord───2*[{colord}]

├─console-kit-dae───64*[{console-kit-dae}]

├─cron

├─5*[getty]

├─gvfsd───{gvfsd}

├─irqbalance

├─libvirtd───10*[{libvirtd}]

├─lightdm─┬─Xorg

│ ├─lightdm─┬─lightdm-greeter───lightdm-gtk-gre───2*[{lightdm-gtk-gre}]

│ │ └─{lightdm}

│ ├─lightdm

│ └─2*[{lightdm}]

├─login───bash

├─lpd

 “pstree” is for Linux systems : pstree –pu

 “top”: display Linux processes

2/26/2020slide #4

UNIX Process Execution Modes
 Process execution modes => The state of a CPU

 Two Modes: User Mode & System mode (kernel mode)

 User mode

 When the CPU is executing the code for a user program which accesses
its own (user) data space

 System mode, also called kernel mode

 The state of a CPU where the kernel needs to ensure that it has
privileged access to data and physical devices.

 Runs on behalf of a user process and is a part of the user process

 Switch from user mode to system mode by making system calls

 Code running in user mode must delegate to system APIs to access
hardware or memory

 System call

 Is a fundamental interface b/w an application and OS (kernel)

 Is a request by user program for kernel services

 Use man page: man syscalls to learn more and a list of system calls on
that Linux system

2/26/2020slide #5

http://www.linfo.org/kernel_mode.html

http://www.linfo.org/kernel_mode.html

2/26/2020slide #6

Process Creation Mechanism

 On UNIX, process creation, execution and termination are
done by a set of four system calls

 fork, wait, exec, and exit

 The fork system call

 A process is created in UNIX with the fork() system call

• fork creates a duplicate process of the calling process with a new PID

• The calling process is called the parent process

• The duplicate process is the child process of the calling one

 A parent process can have many child processes, but a child
process can only have one parent process

 The child process starts right after the call of fork. It is responsible
to do the work, such as the command called through command line

 The wait system call

 Suspend the parent process after creating the child process with
the fork system call

2/26/2020slide #7

 The exec system call

Real execution is done by the child process through the exec

system call

 The (forked) child process calls exec with the name of the

command as its argument

 The kernel loads this new program into memory in place of

the process (the child) that calls it and becomes the child

process (hold its PID) and starts executing.

 The exit system call

 When the child process terminates, it calls exit system call,

and sends a signal (SIGCHLD) to its parent,

 The parent wakes up from the wait when it receives the

SIGCHILD signal, and you get your shell back in case of

command line…

2/26/2020slide #8

Login

PID=1279

PPID=1

PPID=1279

bash:PID=1579

PPID=1579

PID=2816

PPID=1579

vi:PID=2816

PPID=1279

Bash: PID=1579

bash

PID=1579

PPID=1279

exit() and sends signal to its

parent: PID 1579

wait()

(sleep)

fork()

exec() takes “vi”

as argument

PID=1 is the init

process

bash

Start a user program “vi”

in bash (pid 1579)

exec()

SIGCHLD

2/26/2020slide #9

Process Termination

 Control-Key
 Ctrl-C: send SIGINT (interrupt) signal

 Ctrl-\: send SIGQUIT signal

• stronger than ctrl-C, used when ctrl-C does not work

 Shell cmd kill with the following arguments and signals
 PID=12345: kill 12345 (how to get the pid?)

 Process name: killall foo

 Options (send a signal to the process)

• -TERM: termination signal, by default (15)

• -QUIT: quit signal (3)

• -KILL: kill -9 12345

• -s signal(number of name) pid

• the most strongest signal (SIGKILL), the OS should terminate the
process immediately and unconditionally. (SIGKILL is a deadly force!)

 kill –l

 List all the available signals on the system

2/26/2020slide #10

A fork/exec Program

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void){

int var = 88;

pid_t pid;

int status;

printf("PID=%d, var=%d\n", getpid(),var);

fflush(stdout);

pid = fork();

if (pid < 0) { printf("fork error\n");

} else if (pid == 0) { /* child */

printf("Child process, pid=%d, ppid=%d\n", getpid(), getppid());

var++; /* modify variables */

sleep(2);

execl("/bin/date", "date", NULL); // try with and without this line

}

wait(&status);

printf("Child process is done, var = %d, status=%d\n", var, status);

exit(0);

}

gcc -o test fork.c

./test

PID=2367, var=88

Child process, pid=2368, ppid=2367

Thu Sep 11 14:50:13 CDT 2008

Child process is done, var = 88,

status=0

2/26/2020slide #11

Fore- & Back-ground Processes

 UNIX as a multitask OS, lets you run many jobs in the

background while you can do something else in the

foreground

 Foreground processes, the shell running the process has to wait for

the termination of the running process.

 Background jobs, the shell has not to wait for the end of the

process. The shell can run as many background processes as the

system allows

 Running a background process with &

 &: PUT an ampersand (&) at the end of the command line

mining > output.txt 2>&1 &

 nohup:

nohup mining & # The output will be saved in nohup.out

2/26/2020slide #12

Process ID & Job Numbers

 Job is a group of processes:

 ls |wc two processes in one job

 [1]-Job number refers to the background processes that
are running under the current shell

 30796 is the PID, a unique number system wide

 $!: the most recently job (PID) put in the background

 echo $! 30796

 Job number can be used to kill a background process

 kill %1

 Of course, it can be terminated using

 kill 30796

hlin@dakota:~/test> sleep 10 &

[1] 30796

2/26/2020slide #13

More about bg & fg processes

A running background job can be brought to
front

 fg 12345

A running foreground job can be sent to
background in two steps

 1st, suspend the foreground job first with ctrl-z,

• you regain the control of the terminal

 2nd , run “bg” will send the suspended job to run in

background

2/26/2020slide #14

Process Priority
 OS schedules the processes based on their priorities

 Processes with higher priority will run before those with a lower
priority

 Processes with the same priority are scheduled round robin

 By default, the priority number is set to be your shell priority

 Modifying process priority
 Run program with a different process priority

• nice program

– By default, nice add 10 to your current shell priority

• nice –n 20 program

– Add 20 to our current shell priority

 Changing the process priority of a running process
• renice -10 –u hlin

– Increase by 10 for all process belonging to user hlin

• renice -10 12345

– Increate priority by 10 for process 12345

 The niceness value ranges [-20,19] (lowest having highest priority

