
2/26/2020slide #1

UNIX Process
 Program vs. Process (Process Program)

 A program is a set of machine code instructions and data stored in an

executable image on disk, not in memory yet

 A process is a program in action / execution, i.e. a running program,

the program is loaded in memory

 UNIX is a multiple processes (multi-users) Operating System

 Many processes are kept in memory at the same time

 Each individual process runs in its own virtual address space

 Operating system (the kernel) manages all the processes, scheduling

the processes to share the resources, etc.

• A scheduler uses a number of scheduling strategies to ensure fairness,

such as deciding which process to run next

 Each process has a unique ID, called Process ID (PID)

 Each process also has one parent process, PPID

2/26/2020slide #2

ps - Get a Snapshot of all the

Current Active Processes
 Without any options, it gives the processes running in the

shell where the command (ps) is being executed
PID TTY TIME CMD

10289 pts/4 00:00:00 bash

10520 pts/4 00:00:00 ps

 with –f: ps –f

UID PID PPID C STIME TTY TIME CMD

hlin 10289 10288 0 14:06 pts/4 00:00:00 -bash

hlin 10526 10289 0 14:22 pts/4 00:00:00 ps -f

 See EVERY process on the system

 using Unix (System V)-style (with short dash)

• ps –e; ps –ef; ps –A;

 using BSD-style (without the short dash)

• ps aux; ps ax

2/26/2020slide #3

Process Tree with “pstree”

 Shows running processes as a tree with the parent-child relationship

init─┬─accounts-daemon───2*[{accounts-daemon}]

├─acpid

├─at-spi-bus-laun─┬─dbus-daemon

│ └─3*[{at-spi-bus-laun}]

├─avahi-daemon───avahi-daemon

├─colord───2*[{colord}]

├─console-kit-dae───64*[{console-kit-dae}]

├─cron

├─5*[getty]

├─gvfsd───{gvfsd}

├─irqbalance

├─libvirtd───10*[{libvirtd}]

├─lightdm─┬─Xorg

│ ├─lightdm─┬─lightdm-greeter───lightdm-gtk-gre───2*[{lightdm-gtk-gre}]

│ │ └─{lightdm}

│ ├─lightdm

│ └─2*[{lightdm}]

├─login───bash

├─lpd

 “pstree” is for Linux systems : pstree –pu

 “top”: display Linux processes

2/26/2020slide #4

UNIX Process Execution Modes
 Process execution modes => The state of a CPU

 Two Modes: User Mode & System mode (kernel mode)

 User mode

 When the CPU is executing the code for a user program which accesses
its own (user) data space

 System mode, also called kernel mode

 The state of a CPU where the kernel needs to ensure that it has
privileged access to data and physical devices.

 Runs on behalf of a user process and is a part of the user process

 Switch from user mode to system mode by making system calls

 Code running in user mode must delegate to system APIs to access
hardware or memory

 System call

 Is a fundamental interface b/w an application and OS (kernel)

 Is a request by user program for kernel services

 Use man page: man syscalls to learn more and a list of system calls on
that Linux system

2/26/2020slide #5

http://www.linfo.org/kernel_mode.html

http://www.linfo.org/kernel_mode.html

2/26/2020slide #6

Process Creation Mechanism

 On UNIX, process creation, execution and termination are
done by a set of four system calls

 fork, wait, exec, and exit

 The fork system call

 A process is created in UNIX with the fork() system call

• fork creates a duplicate process of the calling process with a new PID

• The calling process is called the parent process

• The duplicate process is the child process of the calling one

 A parent process can have many child processes, but a child
process can only have one parent process

 The child process starts right after the call of fork. It is responsible
to do the work, such as the command called through command line

 The wait system call

 Suspend the parent process after creating the child process with
the fork system call

2/26/2020slide #7

 The exec system call

Real execution is done by the child process through the exec

system call

 The (forked) child process calls exec with the name of the

command as its argument

 The kernel loads this new program into memory in place of

the process (the child) that calls it and becomes the child

process (hold its PID) and starts executing.

 The exit system call

 When the child process terminates, it calls exit system call,

and sends a signal (SIGCHLD) to its parent,

 The parent wakes up from the wait when it receives the

SIGCHILD signal, and you get your shell back in case of

command line…

2/26/2020slide #8

Login

PID=1279

PPID=1

PPID=1279

bash:PID=1579

PPID=1579

PID=2816

PPID=1579

vi:PID=2816

PPID=1279

Bash: PID=1579

bash

PID=1579

PPID=1279

exit() and sends signal to its

parent: PID 1579

wait()

(sleep)

fork()

exec() takes “vi”

as argument

PID=1 is the init

process

bash

Start a user program “vi”

in bash (pid 1579)

exec()

SIGCHLD

2/26/2020slide #9

Process Termination

 Control-Key
 Ctrl-C: send SIGINT (interrupt) signal

 Ctrl-\: send SIGQUIT signal

• stronger than ctrl-C, used when ctrl-C does not work

 Shell cmd kill with the following arguments and signals
 PID=12345: kill 12345 (how to get the pid?)

 Process name: killall foo

 Options (send a signal to the process)

• -TERM: termination signal, by default (15)

• -QUIT: quit signal (3)

• -KILL: kill -9 12345

• -s signal(number of name) pid

• the most strongest signal (SIGKILL), the OS should terminate the
process immediately and unconditionally. (SIGKILL is a deadly force!)

 kill –l

 List all the available signals on the system

2/26/2020slide #10

A fork/exec Program

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(void){

int var = 88;

pid_t pid;

int status;

printf("PID=%d, var=%d\n", getpid(),var);

fflush(stdout);

pid = fork();

if (pid < 0) { printf("fork error\n");

} else if (pid == 0) { /* child */

printf("Child process, pid=%d, ppid=%d\n", getpid(), getppid());

var++; /* modify variables */

sleep(2);

execl("/bin/date", "date", NULL); // try with and without this line

}

wait(&status);

printf("Child process is done, var = %d, status=%d\n", var, status);

exit(0);

}

gcc -o test fork.c

./test

PID=2367, var=88

Child process, pid=2368, ppid=2367

Thu Sep 11 14:50:13 CDT 2008

Child process is done, var = 88,

status=0

2/26/2020slide #11

Fore- & Back-ground Processes

 UNIX as a multitask OS, lets you run many jobs in the

background while you can do something else in the

foreground

 Foreground processes, the shell running the process has to wait for

the termination of the running process.

 Background jobs, the shell has not to wait for the end of the

process. The shell can run as many background processes as the

system allows

 Running a background process with &

 &: PUT an ampersand (&) at the end of the command line

mining > output.txt 2>&1 &

 nohup:

nohup mining & # The output will be saved in nohup.out

2/26/2020slide #12

Process ID & Job Numbers

 Job is a group of processes:

 ls |wc two processes in one job

 [1]-Job number refers to the background processes that
are running under the current shell

 30796 is the PID, a unique number system wide

 $!: the most recently job (PID) put in the background

 echo $!  30796

 Job number can be used to kill a background process

 kill %1

 Of course, it can be terminated using

 kill 30796

hlin@dakota:~/test> sleep 10 &

[1] 30796

2/26/2020slide #13

More about bg & fg processes

A running background job can be brought to
front

 fg 12345

A running foreground job can be sent to
background in two steps

 1st, suspend the foreground job first with ctrl-z,

• you regain the control of the terminal

 2nd , run “bg” will send the suspended job to run in

background

2/26/2020slide #14

Process Priority
 OS schedules the processes based on their priorities

 Processes with higher priority will run before those with a lower
priority

 Processes with the same priority are scheduled round robin

 By default, the priority number is set to be your shell priority

 Modifying process priority
 Run program with a different process priority

• nice program

– By default, nice add 10 to your current shell priority

• nice –n 20 program

– Add 20 to our current shell priority

 Changing the process priority of a running process
• renice -10 –u hlin

– Increase by 10 for all process belonging to user hlin

• renice -10 12345

– Increate priority by 10 for process 12345

 The niceness value ranges [-20,19] (lowest having highest priority

