
3/26/2020Slide #1

Perl--Practical Extraction Report Language

 Developed by Larry Wall – Who is also well-known for

the “patch” utility

• Original purpose: extract data from one source and translate to

another format

• First release in 1987

 An interpreted language (scripting), no need to be

compiled

 Support multiple platforms

 Unix, Linux, MS Window, MacOS, etc.

 It is OPEN SOURCE

 Books

 Beginning Perl by Simon Cozens, Also available on line at

https://www.perl.org/books/beginning-perl/

 Online doc: https://perldoc.perl.org/

https://www.perl.org/books/beginning-perl/
https://perldoc.perl.org/

3/26/2020Slide #2

Perl Programming Language

It pulls together the best features of several other

scripting languages

 sed, awk, shells, etc.

Syntax was made up out of

 C/C++, Pascal, basic, UNIX shells, and others

A very powerful scripting language

 System management and text handling with regular

expression

 Database handling

 CGI programming, dynamic web pages, etc.

3/26/2020Slide #3

First Perl Program: Hello World

 Create a text file hello.pl using vi

 First line

 Like shell script, the first line starts with #! followed by the name of

the perl program /usr/bin/perl –w

 The –w option turns on the warnings, such as undefined variables

 Comment lines start with #

 Lines must end with “;”

 Double quotes are needed to interpret new line, “\n”

 perl does NOT add new line automatically for you as “echo”

or print in awk

$ cat hello.pl

#!/usr/bin/perl -w

#This is my first perl program

print "Hello World!\n";

3/26/2020Slide #4

Program Execution

 First method:

 Add execution permission to the script

chmod +x script.pl

 ./script.pl

 The other (portable) way
• using perl program directly: perl –w script.pl

 The perl command options

 -w: turn on all the useful warnings

 -c: syntax checking only

 Common syntax errors:

 Missing semicolon at the end of line

 Missing prefix: “$”, “@”,or % when define and reference variables

$a=“Hello World”;

@a=(Hello World);

%a=(“John Smith”, 200, “Alex”,300)

3/26/2020Slide #5

Variable Scope

Global Variables vs. Local Variables

Global Variables

 They can be “seen” and changed anywhere in the

perl script

Local Variables

 Declare local variables with keyword “my”:

 They are constrained to the enclosing block and all

the blocks inside/beneath it
my ($lname, $fname);

my $lname=‘Lin’;

my $fname=‘Amy’;

3/26/2020Slide #6

Perl Pragma: “strict”

Generally, you can use variables on the fly, but
very error-prone

strict: the most important perl pragma

The “strict” progama forces the declaration of
variables via the use of the Perl keyword my

Add line use strict at the beginning of the script

(after the first line and commenting lines)

• “use” is the key word for import a perl modules (similar to
Java’s import)

 In case you need to define a global variable within a

subroutine (function), use key word “our” instead of “my”

3/26/2020Slide #7

Quoting

 Single quotes, double quotes, and back slash quotes

 Quoting rules are the same as in Shell scripting

 No interpretation for everything inside single quotes

 You will need use single quotes or \ if double quotes are

needed

 Examples
 print “$a\n”;

 print ‘$a\n’;

 print $a, “\n”;

 Print “3+4=”, 3+4, “\n”;

 Double quotes are used more often than single quotes

 How to print the following line to the screen using Perl

He said: "I am 90 years old!"

1.print 'He said: "I am ', $year, ' old!"', "\n";

2.print "He said: \"I am $year old!\" \n";

3/26/2020Slide #8

Data Type #1: Scalar

 A scalar can be a number or a string, prefix “$”

 $name=“Jone Smith”;

 $number=10;

 Operations

 String Concatenation using a “dot”

• $a = “hello”.”world”;

• $a = $b.“Hello”.“World”;

 Arithmetic Operations

• + - * / ** (power), bitwise operations

– $num = (4**2 + $salary/5);

• Numbers are all treated as floating numbers

 String and number conversion, Perl will do this for you
 $num=“0.25”; $value=4.0 * $sum

3/26/2020Slide #9

Data Type #2:

Regular (Numeric) Array (List)

 An array variable is assigned with prefix @

 Index starts at “0”

 Define an array

 elements separated by comma, enclosed with parentheses

• @a = (1, 2, 3); @b = (“hello”, “world”, “!”);

• @c = (@a, @b, “Good Day”);

 Using qw subroutine (function)

• @b = qw(hello world !); (“qw” refers to quote word)

 split: split a string into a list:

 split(pattern, string, limit)

• @chars = split(//, $word);

• @words = split(/ /, $sentence);

• @sentences = split(/\./, $paragraph);

• @paragraphs= split(/\\n/, $essay);

3/26/2020Slide #10

Reference element of an index array
 $a1 = $a[0];

(element is a scalar, needs “$”)

Length of an array: $#varname + 1

 $#varname : the index of the last element

Array to string with “join”

 @names=(“John”, ‘Michael’, “Jessie

Smith”);

 $names=join(‘;’, @names);

Print array

 print “@names\n”;

3/26/2020Slide #11

Command-line Arguments

 @ARGV A predefined regular array contains the
command-line arguments

 $#ARGV+1 The total number of arguments ($#ARGV gives
the index of the last element, index starts with 0)

#!/usr/bin/perl -w

use strict;

#use hello_to.pl;

if($#ARGV+1 == 0) # equivalent to if($#ARGV==-1)

{

print "Usage: hello arg1 arg2 ...\n";

exit 1;

}

for(@ARGV){ print $_,"\n";}

for(my $i=0; $i<= $#ARGV; $i++){ print $ARGV[$i],"\n";}

my $name;

foreach $name (@ARGV){ print $name,"\n";}

Some String Functions

chop(string) Removes the last character of the string

chomp (string) remove the last end of line character, otherwise,
do nothing

chr(number) Returns the character having the ASCII number

join(string, array)
Returns a string that consists of all the elements
of array joined with string

split(pattern, string, limit)
Split the string to array up to limit with pattern
as the delimiter,

lc(string) Return string in lower case

uc(string) Return string in upper case

length(string) Returns the length of the string

substr(string, offset, len)
Returns portion of the string starting at offset,
up to length len

reverse (@list) Reverse the order of the elements in the list

3/26/2020Slide #13

Regular Array Operations

 shift

 Remove a value from the front of the array

 $first = shift(@_);

 $first = shift(@_);

 unshift

 Add an element at the front of the array

unshift($namelist, “Smith”);

 push: append element to the end of an array

 @namelist = (“John”, “Jones”);

 push(@namelist, ‘Smith’);

 pop: remove element from the end of an array

 $name = pop(@namelist);

3/26/2020Slide #14

Sorting

Sorting alphabetically

 Ascend order (default)

@sortedList = sort(@list);

 Descend order (reversed)

@sorted = sort{$b cmp $a} (@list);

Sorting numerically for elements of numbers

 Ascend order (default)

@sortedList=sort{$a<=>$b} @list;

 Descend (reversed)

@sorted_list = sort { $b <=> $a } @list;

3/26/2020Slide #15

Array to String

Convert regular array to a string with “join”

function

For array @fruit

@fruit=(apple, pear, peach);

To:

$strfruit = join(“ ”, @fruit);

$strfruit = join(“\n”, @fruit);

3/26/2020Slide #16

Data Type #3:

Associative Arrays (Hashes)

 Variable prefixed with %

 Creation: pairs of key value

 %salary = (“David”,10000, “John”,2000);

 %grade = ("David" => 100,

"John" => 90

);

 Reference an element with curly bracketed key
 $salary_david=$salary{“David”};

Note:

 How to reference an element of a regular (index) array?

 How to reference element of an associate array in awk?

3/26/2020Slide #17

Some Special Default Variables

 @ARGV

 Command line arguments when running the perl script

 %ENV: Predefined hash for environment variables.

 $path = $ENV{'PATH'};

 $username=$ENV{“LOGNAME”};

 $_

 Default variable for function arguments and pattern

searching space

• In many functions, if an argument is not specified, $_ will be

automatically assigned

• chop ($_) equivalent to chop

 @_

 Array: the arguments passed to a function.

 It is a local variable to that function

3/26/2020Slide #18

Working with Associative Arrays

Add new element to an exiting hash array

 $salary{“Eric”} = 3000;

Note, if key Eric exists, the previous value will be

replaced by the new one (modify an existing

element)

 $salary{“Eric”} = 2000;

Delete an existing entry/key

 delete $salary{“John”}

Reset an associative array

 %name=() or undef %name;

 undef $name; undef @name;

3/26/2020Slide #19

Functions for Hash Array

exists

 To check if a key exists

if (not exists $name{“key”})….

keys

 Get the list of keys of the associative array

@keylist = keys %salary;

values

 Get the list of values of the hash array

@valuelist = values %salary;

3/26/2020Slide #20

each

Returns a two-element list that contains a key and

value pair from the given associative array one by

one

 ($name, $value) = each %salary

while (($name,$value)=each %salary)

{ print “$name = $value\n”;}

Note: “each” returns false when the end of

array is reached

3/26/2020Slide #21

for & foreach loop

 Regular iterator
 for ($i=0; $i<=10; $i++) { … }

 Regular arrays
 for (@names) { print “name is $_\n”;}

 Special variable $_ is often used as the ‘default variable’,

whatever it is passed to

 foreach loop
 foreach $name (@names)

{ print “It is $name\n”;}

 foreach $value (values %salary)

{ print “ $value\n”);}

 foreach $name (keys %salary)

{ print “$name: $salary{$name}\n”);}

3/26/2020Slide #22

do/while/do/until

 Two keywords for loop control

 next: Skip to the next iterator

 last: To exit the loop

while ($num < $total) {

$num++;

}

until ($x > 6) {

print “num is $x!\n";

$x++;

}

do {

$junk++;

} while ($junk < 39);

do {

$junk++;

} until ($junk >39);

3/26/2020Slide #23

Logical Operators

Compare Numbers

 $a > $b

 $a < $b

 $a == $b

 $a != $b

Compare Strings

 $a gt $b $a sorts alphabetically after $b

 $a le $b $a sorts alphabetically before $b

 $a eq $b $a is the same as $b

 $a ne $b $a is not the same as $b

3/26/2020Slide #24

Logical Conjunctions

$a and $b ; $a && $b

• True if both $a and $b are true

$a || $b ; $a or $b

• True if either $a or $b is true

 not $a

• True if $a is not true

3/26/2020Slide #25

if/elsif/elsif/else

if ($a < $b) { $z++; }

elsif ($b < $c) { $y++; }

elsif ($c < $d) { $x++; }

else {$yikes++;}

***Note: you have to have the curly braces
even it contains only one line

3/26/2020Slide #26

Regular Expressions

Matching

 if ($name =~ /John/) { …}

 If hinting special variable $_

• if (/John/) {….} or

• if (/John/i) {…} # if you want to ignore case

 Matching a variable’s value, the variable will be

interpolated to its value
• if (/$name/)

Modifying strings with regex substitution

 s/John/John has retired/; print $_, “\n”;

 $name =~ s/John/Alex/; print “$name\n”

3/26/2020Slide #27

split & join

“split” will split a string with /delimiter/ into

a list (array)

 split split(/ */, $_)

@_=split (/\s+/, $_)

“join” will convert a list into a string, put a

defined delimiter between the elements

 join “_”, @wordlist; print

“$_\n”;

 $sentence = join “ ”, $wordlist;

3/26/2020Slide #28

Meta Characters and More

Learn more about regular expressions and

meta characters from:

http://blob.perl.org/books/beginning-

perl/3145_Chap05.pdf

http://blob.perl.org/books/beginning-perl/3145_Chap05.pdf

3/26/2020Slide #29

Standard Input/Output

 STDOUT

print STDOUT “name:”;print “name:”;

 STDOUT is normally no need to be specified

 STDIN, the stream name is enclosed with <>

 STDIN can be dropped too

$passwd = <STDIN>; $passwd = <>;

 Reading through a loop

• while (<STDIN>) { print “$_\n”;}

• while (<>) { print “$_\n”;}

• $_: what just being read

 chomp is normally followed after STDIN to remove the last EOL

character

• chomp $passwd; # remove the EOL

• chomp # will be the default $_

3/26/2020Slide #30

File Input/Output

I/O with files with open and file redirections: <, >,

>>

open(IN, “</some/directory/file.in");

open (OUT, ">/some/directory/file.out");

in case to append to the outfile, use >> instead

while (<IN>) { print OUT "$_\n"; }

close(IN);

close(OUT);

When open file for read, “<“ dropped for simplicity

 open(IN, “file.in"); # open file for read

Upper-case letters for file descriptors by convention

3/26/2020Slide #31

I/O Error Handling

The “die” function

 Program exits in case of error

open (IN, "/some/directory/file.in")

|| die "cannot open: $!";

 $! Contains the most recent system error

 Program exits if open file fails

3/26/2020Slide #32

Example

#!/usr/bin/perl –w

$thisd=$ENV{“PWD”};

open(AC, "< $thisd/info.txt") || die “Error $!\n";

while (<AC>)

{

chomp;

if ((/^#/)||(/^$/)||(!/=/)) { next; }

$_ =~ s/\"//g;

if (/^YEAR)/)

{

($foo, $year) = split(/=/);

last;

}

}

close(AC);

3/26/2020Slide #33

Perl Subroutines

 Function is defined with “sub”
 sub print_name { my $name=“Smith”; …}

 Global variables are “visible” to subroutines

 In case of “use strict”, global variables have to be declared with
keyword, our, otherwise, it is not available outside the

subroutines

 Invoke a subroutine
print_name($lastname, $firstname);

 Parameters passed to a function: @_

@_ is a “list”

 The list is saved in the special default variable: @_

 sub print_name { ($last, $first) = @_; print “$last, $first\n”; }

• You can have more elements than @_ has, the rest just empty string

• Ex: ($last, $first, $middle) = @_; $middle will be no value

3/26/2020Slide #34

Perl Subroutines (Cont’d)

 Subroutines can be declared first, defined later. They

have to be declared or defined before being

referenced.

 Subroutines can return a value explicitly or implicitly

 Explicitly return a value using return statement

 Implicitly, the last “thing” of the subroutine is returned

 Function can return

• a scalar,

• a list, or

• an associative array

 Subroutines can use pass by reference to pass and

return values…

3/26/2020Slide #35

A perl script to compute the max

number of a list

sub max

{ my $maxValue = shift @_;

foreach (@_)

{

if ($_ > $maxValue)

{ $maxValue = $_; }

}

return $maxValue;

}

max takes a list of numbers

print max(@array);

3/26/2020Slide #36

Directories

Change directory:

 chdir("/some/path") || die "Cannot chdir

to /some/path ($!)";

Directory handles

 Access content of directory with readdir

opendir(DIRHANDLE, "/some/path") || die

"Cannot opendir /some/path: $!";

foreach $name (sort readdir(DIRHANDLE))

{ print "found file: $name\n"; }

closedir(DIRHANDLE);

3/26/2020Slide #37

Manipulating Directories

 Create and remove directories

 mkdir("newdir", 0755) || die "Cannot mkdir newdir: $!";

 rmdir("olddir") || die "Cannot rmdir olddir: $!";

 Rename file/dir
 rename("file.txt", "file-old.txt") || die

"Cannot rename file.txt: $!";

 Remove file(s)
 unlink($filename)

 unlink (@filelist);

 Testing
if (-d "/some/path") { $where = "/some/path"; }

else { $where = "/another/path"; }

