
4/9/2020Slide #1

make

https://www.gnu.org/software/make/manual/make.html

GNU make utility

 A tool that makes it easy for you to describe how to

compile programs to build C/C++ applications

 Reads a description of a project from a Makefile

• You need to describe all the files and their

dependencies in the Makefile

To use the “make” utility, just type “make” at

the command prompt

 By default, make will read and process a Makefile

in your current directory.

 Otherwise, specify the file name with –f option

• make –f your_make_file

4/9/2020Slide #2

Makefile

A Makefile specifies a set of compilation rules

 in terms of targets (such as executables) and their

dependencies (such as object files and source files)

 The “make” utility goes through the Makefile and follows

the chain of dependencies until it reaches the end of the

chain and then begins backing out executing the

commands found in each target's rule

make looks at the time stamp for each file in the chain

and compiles from the point that is required to bring

every file in the chain up to date

 The “make” utility compiles only those source files that

have been changed and the modules that depend upon

them

4/9/2020Slide #3

Makefile Format

target: dependencies

a tabcommand

 dependencies: names of files depended by the target, i.e:

Hello: Hello.cpp

 Rule/command: (the how) to construct the target from the

dependencies, such as

g++ -o Hello Hello.cpp

 The first character pre the command line must be a tab

The space between the beginning of the line to the command MUST

be the tab, not white an empty spaces

4/9/2020Slide #4

A Simple Makefile

1 #Makefile

2 GCC = gcc

3 OBJS = foo.o bar.o baz.o

4 CLFAGS = -Wall –O2

5 LDLIBS = -L./ -lbar

6 prog: $(OBJS)

$(GCC) –o prog $(OBJS) $(LDLIBS)

7 foo.o: foo.c

$(GCC) $(CFLAG) –c foo.c

8 bar.o: bar.c

$(GCC) $(CFLAG) –c bar.c

9 baz.o: baz.c

$(GCC) $(CFLAG) –c baz.c

10.PHONY: install clean

11 install:

install –m 755 foo $HOME/local/bin

12 clean:

rm *.o; rm foo

 Note: the line index is not part of the Makefile

4/9/2020Slide #5

Makefile Explained
 L1: comment

 L2-L5: define variables (macro) OBJS, LDLIBS, GCC

 L6-L9: definition of compilation rules

 It states that target prog depends on (or is built from) the object

files whose names are contained in variable OBJS (called

dependency list)

 command line after that tells how to build the target from the

dependency list, the first character in the command line must

be a tab

 L10, .PHONY:

 tells make that install and clean are not target files to avoid a

conflict with a file of the same name

 And there is no dependents for the phony target, so it will

always be executed when the target is requested

 L11-12: install and clean are phony targets

4/9/2020Slide #6

Phony Targets

 A phony target is one that is not really the name of a file

 It is just a name for a recipe to be executed when you

make an explicit request.

 There are two reasons to use a phony target

 to avoid a conflict with a file of the same name,

 to improve performance.

 Command: make clean

 Will execute the recipe: rm *.o; rm fo

 Command: make install

 Will execute the recipe: install –m 755 foo $HOME/local/bin

• install: copy files and set attributes

For more detail:

 https://www.gnu.org/software/make/manual/html_node/Phony-

Targets.html

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html

4/9/2020Slide #7

“Implicit Rules”

Built-In Rules

 Compiling C programs file.o
$(CC) $(CFLAGS) –c

 Compiling C++ programs
• $(CXX) $(CXXFLAGS) –c

Pattern Rules (prefix %)

 %.o:%.c How to make a .o file from a .c file

https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html#Implicit-Rules

https://www.gnu.org/software/make/manual/html_node/Implicit-Rules.html#Implicit-Rules

4/9/2020Slide #8

Automatic variables--special symbols

 The inference rule

 .s1.s2: describes how to build a target that is appended

with .s2 with a prerequisite that is appended with .s1.

 .SUFFIXES: .o:.c

 $* current target without the extension

 $< is a dependent file (full name of the

prerequisite file)

 $@ represents the full target name of the current

target

.c.o:

$(GCC) $(CFLAG) -c $<

foo: $(OBJS)

$(GCC) –o $@ $(OBJS) $(LDLIBS)
%.o: %.c

$(GCC) $(CFLAG) -c $<

4/9/2020Slide #9

“make” Inference Rules

Look lines 7-9, the rules to make

OBJECT file, they are very similar

<filename>.o : <filename>.c

$(GCC) $(CFLAG) –c <filename>.c

6 foo.o: foo.c

$(GCC) $(CFLAG) –c foo.c

7 bar.o: bar.c

$(GCC) $(CFLAG) –c bar.c

8 baz.o: baz.c

$(GCC) $(CFLAG) –c baz.c

.c.o:

$(GCC) $(CFLAG) –c $<

5 foo: $(OBJS)

$(GCC) –o $@ $(OBJS) $(LDLIBS)

6 foo: $(OBJS)

$(GCC) –o foo $(OBJS) $(LDLIBS)

4/9/2020Slide #10

#Makefile, the indent in the rules are always a TAB

PROGRAM := qemployee

CXX := c++

SRC := employee.cpp main.cpp

OBJS := employee.o main.o

LIBDIRS := ../lib

INCLUDEDIRS := ../include

LBFLAGS := -L$(LIBDIRS)

CXXFLAGS := -Wall -O2 -I$(INCLUDEDIRS)

$(PROGRAM):$(OBJS)

$(CXX) $(OBJS) -o $(PROGRAM) $(LBFLAGS)

employee.o: employee.cpp

$(CXX) $(CXXFLAGS) -c employee.cpp -o employee.o

main.o: main.cpp

$(CXX) $(CXXFLAGS) -c main.cpp -o main.o

clean:

rm *.o; rm employee

install: empolyee

install –m 755 employee $HOME/local/bin

.PHONY: install clean

File: Makefile with variables (macros)

4/9/2020Slide #11

References

An Introduction to GCC

http://www.network-theory.co.uk/docs/gccintro/index.html

GNU Debugger
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html

GNU “make”
http://www.gnu.org/software/make/manual/make.html

http://www.network-theory.co.uk/docs/gccintro/index.html
http://sourceware.org/gdb/current/onlinedocs/gdb_toc.html
http://www.gnu.org/software/make/manual/make.html

