
1/16/2020Slide #1

Unix Shell & File System

1/16/2020Slide #2

UNIX Operating System

 A multiuser, multitasking operation system

 The Kernel

 The heart of the UNIX operating system. It
is loaded into memory at boot-up time and
manages the system

• Create and control processes

• Talk to the hardware and devices

• Manages memory and storage (file system)

 The Shell

 A utility program, a command interpreter

 Interface between the user and the kernel

 The Application Programs

 Compilers

 Text editors

 Mail utilities

 Etc…

H.W.

Kernel (OS)

Shell

Applications

1/16/2020Slide #3

UNIX/Linux Shells
 The SHELL

 Ritchie & Thompson’s paper:

• The shell is a command line interpreter. It reads lines
typed by the user and interprets them as requests to
execute other programs.

• A command line consists of the command name followed by
arguments to the command, all separated by spaces

 A special program used as an interface b/w user and kernel (OS)

 It starts up when you log on the system (not true for Linux desktops)

 First significant, standard UNIX shell was introduced in 1979 (Bourne shell)

 UNIX shells

 Thompson Shell (1971) ->Bourne shell (1977); C shell; Korn shell

 Linux shells (GNU shells)

 Bash: GNU Bourne Again shell

 TC shell, a popular extension of C shell

 Z shell, a popular extension of Korn shell

 Now “dash” from Ubuntu distribution

• Debian Almquist SHell

• A tale of two shells: bash or dash: https://lwn.net/Articles/343924/

https://lwn.net/Articles/343924/

1/16/2020Slide #4

SHELL Variables
 SHELL variables

 Environmental variables

• Available to all the shells (what does this mean?)

• HOME, PATH, PWD, LD_LIBRARY_PATH, SHELL, etc. (by convention,
they are all capitalized)

• “env”, command lists all the current defined environment variables

• “printenv” does the same thing

• To set an environment variable

export VARNAME=VALUE # in bash

 Local variables

• For a specified shell only (what does this mean?)

• To set a local variable: name=“Amy Lin”

 To clear a variable: “unset VARNAME”

 Prefix a “$” sign, $varname when referencing the
variable

1/16/2020Slide #5

Display Values of Variables

echo : display (print) a line of text to the screen
 echo “My home directory is $HOME”

The echo command and its options
 -n: suppress newline at the end of a line output

• This is useful when you want to continue to write on the same
line

 -e: enable backslash interpretation of the escape
sequences, such as \t (tab space), \n (EOL)

echo “you are so \t nice ” you are so \t nice

echo –e “you are so \t nice ”  you are so nice

echo ${varname} echo $varname

• Use curly bracket for string concatenation

• name=${variable}ABC

 Learn more with command: man echo

1/16/2020Slide #6

The Three Types of Quotes

 Single quotes

 no expansion or substitution, display string literally, including
the special characters

 echo ‘$PATH’  $PATH

 Double quotes

 allow variable and command substitution, also preserve white
spaces
echo “here are 5 space: . ” (five space)

echo here are 5 space: . (only one space displayed!)

 Backslash (\)

 Line continuity

 Print some special characters, such as

• $: echo It costs me\$500

• \: echo \\n  \n

file://n

1/16/2020Slide #7

Env. Variables: PATH & HOME
 echo $PATH gives:

/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games

 PATH is a colon-separated list of directories used by the shell when

searching for a program. The order of the search is from left to right

 The search will stop as soon as the “program” is found

 If the “program” is at multiple places, the one found first (from left) will

be used

 In case the program is not found, the shell sends error message: program:

not found

 System defined PATH and user-defined PATH

• The default PATH is system-dependent, and is set by the administrator who

installed the Shell

• The user-defined path is added to the system-defined path and normally is

defined in a shell initialization file, such as .bashrc on a LINUX system

 HOME is where you are after you logon the system, always referred as

“your home directory”

 HOME can also be modified in your shell start-up file, such as .bashrc on

a Linux system

1/16/2020Slide #8

UNIX File System

 Everything is a file in UNIX/Linux

 There are SEVEN types of FILE in three categories

 Ordinary files (or regular files)

• Regular Files

– Binary program (executables)

– Text files (source codes)

• Symbolic links (similar to the shortcut on Windows), is a type of

file that points to another (of any types)

 Directory Files (folders): file that contains other files

 Special Files

• Character special file.

• Block special file, such as hard drive

• Pipe, also called FIFO: a type of file used for communication between

processes running on the same system.

• Socket: a type of file used for network communication between

processes on different systems

1/16/2020Slide #9

 On UNIX, the files are organized into a tree structure

 The root of the tree is named by the character '/'.

 The first few levels of the tree can look like this:

 Use program “tree” to list contents of directories in a tree like format

 The first level directories might not be on the same hard drive

 Never specify drive name like on Windows…

/

etc home

floppy csfaccdrom

usr bin media tmp proc

CS

dev

csstaff

hlin

…

1/16/2020Slide #10

Directory
 On UNIX, “/” is the root of the entire file system

 On Windows, C:\dir1\dir2\file1, D:\dir1\dir2\file2 which contain

• name of the drive

• use backward slash “\” for the nested path

 On Unix, start with root “/”: /home/CS/hlin/homework1.txt

• No hard drive name

• Use forward slash, “/” for the nested path

 The file system is “partitioned” into many “directory” files” for different
purposes

 /bin, /usr/bin: commonly used system and application programs

 /sbin, /usr/sbin: not commonly used system programs

 /etc: system configuration files, etc

 /lib, /usr/lib: hold the libraries programs needed

 /proc: holds files for system information and info for the running programs

 /dev: hold all the device files

 /home: user files

• Each user has his/her own home directory, such as /home/CS/jsmith

 /tmp: special temporary files, everyone can use it (create file and directories
there), but it’s very volatile, expect to be purged often

1/16/2020Slide #11

Navigate the File System
 Where are you when you log on a system?

 You are always under your home directory by default, such as
/home/CS/hlin for me

 echo $HOME => ??

 Some useful shell commands when navigating the file system

 pwd: Present Working Directory (env for variable PWD)

 cd : Change Directory

• “cd /” takes you to the “root” of the file system

• “cd” without argument takes you back to the home directory

• “cd —” (with an option of short dash) takes you to the previous directory

 “ls”: list the content of the current directory

• “ls filepath” will list the content under path filepath

 absolute path or relative path

 Absolute path: path starts from the root, the forward slash /

ex: cd /home/CS/hlin/cs390

 Relative path

• Relative to the current working directory or some other directory

ex: cd cs390 ( cd ./cs390_fall13)

1/16/2020Slide #12

Three special directories

 “.”: the current directory

 “..”: the parent directory (one level up in file tree)

 “~”: refer to the home directory, such as
/home/csuser/jsmith

What do the following commands do?

 cd ~

 cd ..

 cd ../..

 cd

 cd $HOME

 cd $HOME/cs390  cd ~/cs390

Special Directories

1/16/2020Slide #13

jsmith

cs454 hw1

cs390

hw1
CShome/

How to access/change to directory “hw2” as

shown when jsmith is in
/home/CS/jsmith/cs454/hw1?

 Using absolute path:

cd /home/csuser/jsmith/cs390/hw2

cd $HOME/cs390/hw2

cd ~/cs390/hw2

 Using relative path: cd ../../cs390/hw2

hw2

1/16/2020Slide #14

Operations for Directories

 Create directory with “mkdir”
 mkdir cs390

• gives error message if directory exists (use –p option?)

 mkdir –p cs390/hw1

• Create directory and parent directories if they do not exist

– Create all the non-exist directories on the path

• Silence if the directory exists

 Remove directories/files
 Remove empty directory: rmdir dirname

 Remove non-empty directory: rm –r dirName

• –f option, the files/directories will be removed w/o asking

• -i option, it always ask you to confirm any deletion

**Special Note:

* There is no “deleted” folder or trash bin or recycle bin on UNIX, once a file
or directory is removed, it is gone!

* If you are not sure what option to use, read rm’s man page: man rm

1/16/2020Slide #15

Operations for Regular Files

 Commands to display content of file to the screen

syntax: command <filename>

 cat: Display the whole content of file to the screen

 more and less commands

• Display a text file one page at a time (hit spacebar for next page)

• “less” can work on gzip (compressed) files

• To quit before reaching the end of file, hit either :ctrl-C, or ‘q’

 head –<n> and tail -<n> commands

• head -10 file.txt  head –n 10 file.txt

• List the first n or last n lines of the file

• Without –n option, default is to display 10 lines

 Rename (move) files from one location to another

 mv srcfile newfile

 Delete regular files with command rm

 rm srcfile newfile …

1/16/2020Slide #16

Copy Files

cp src dest

 “copy” regular files: cp src_file dest_file

 “copy” directory: cp –r src_dir dest_dir

 recursively copy the content of directory src_dir to a

new directory dest_dir

 All the files contain “path”:

 cp –r ~/cs390/hw1 ~/cs390/hw2

1/16/2020Slide #17

scp -- Remote File Copy

 Transfer local file(s) to a remote system

scp local_file1 local_file2 linh@zeta.itsc.uah.edu:

scp –r local_dir linh@zeta.itsc.uah.edu:

 Transfer files from remote system to local

scp linh@pearl.itsc.uah.edu:remove_file .

(the dot refers to the current local place)

scp –r

linh@pearl.itsc.uah.edu:/path/to/remote_dir

.

Note: (you will be prompted for password)

mailto:linh@zeta.itsc.uah.edu
mailto:linh@zeta.itsc.uah.edu
mailto:linh@pearl.itsc.uah.edu:remove_file
mailto:linh@pearl.itsc.uah.edu:/path/to/remote_dir

1/16/2020Slide #18

Link Files

Hard link files

ln fileA fileB

A hard link file fileB of fileA is created

If we run “ls”, it will appear that a new file fileB has
been created as a copy of fileA (as if cp fileA

fileB, but NOT the same!!)

Symbolic files

ln –s fileA fileC

1/16/2020Slide #19

Input / Output

File Descriptors

 A small unsigned integer, an index into a file

descriptor table maintained by the kernel and used

by the kernel to reference open files and I/O

streams.

The first three descriptors are reserved for the

standard I/O (with terminal)

 0 – stdin: read input from terminal (keyboard)

 1 – stdout: print to terminal

 2 – stderr: print error to terminal by default

• Note: csh/tcsh does not have stderr

1/16/2020Slide #20

Standard I/O Redirection

When a file descriptor is assigned to something other
than a terminal, it is called Standard I/O redirection

“<” is used for STDIN redirection

 Meaning: program will read input from a file, rather

than the terminal.

“>” and “>>” used for STDOUT redirection

 Program will write the output to a file rather than

dumping them to the screen

 >: create a new file, or overwrite the existing one

 >>: create if not exist, otherwise append the content

to the existing one.

1/16/2020Slide #21

 Redirect the standard output (stdout) to a file

 ls > ls.txt

• The output of “ls” command is redirected from the terminal (stdin)

to file who.txt

 who > who.txt

• The output of command who is redirected from the terminal

(stdout) to file who.txt

• In case of error, the error message will be dumped to the screen

 date > date.txt 2> error.txt

• The output of command date is redirected from the terminal to file

date.txt, any error will be redirected to file error.txt

 cat file2 file3 >> file1.txt

• concatenate file2 and file3 to file1.txt

 Use “<” to read input from a file instead of stdin

 Using mail utility non-interactively:

mail –s “datafile” linh@uah.edu < datafile.txt

 cat <file.txt (normally, the < is dropped for simplicity)

mailto:linh@uah.edu

1/16/2020Slide #22

Redirect to/from pipe…

pipe

 The output of one process is sent as the input of
another process

 It is the oldest form of UNIX Inter-Process
Communication (IPC)

 Allows processes to communicate with each other on the
same system

Syntax of pipe command

 who | wc

• Count the number of people currently logon the system

1/16/2020Slide #23

File Archive & Compression
 File Archiving

 Store a group of files in one file (or on tape in the old days)

 Easy for file backup and file transfer

 Archiving files with “tar” (tape archive), no data
compression
tar cvf file.tar filedir1 filedir2 file1 …

 “c”: create

 “v”: verbose

 “f”: create a tar file

**Note: The files to be archived can be directories and regular files

 “tar” with compression option (man tar)
 “z” for “gzip” compression

tar czvf file.tar.gz file1 file2 dir1 …

 “j” for “bzip2” compression

tar cjvf file.tar.bz2 file1 file2 dir1 …

 “J” for “xz” compression

tar cJvf file.tar.xz file1 file2 dir1 …

1/16/2020Slide #24

Operations on Archive Files

 Examine the content of a compressed archive file

 tar tzvf file.tar.gz

 tar tjvf file.tar.bz2

 Extract files from archive file

 tar xvf file.tar

 Decompress archive files: replacing “c” with “x”

 tar xzvf file.tar.gz < -C destdir >

 tar xjvf file.tar.bz2

 tar xzvf /path/file.tar.gz

 To decompress/extract files from a Window zip file

 unzip file.zip

 How to open gz, bz2 files on Window?

 7-Zip: a free file archiver for MS Windows Users

1/16/2020Slide #25

“gzip”

 gzip: GNU zip

 Works on regular files ONLY

• By default, it will create a gzip file replacing the original file(s)

gzip foo.txt  foo.txt will be replaced by foo.txt.gz

• To keep the original file(s)

gzip –c foo.txt >foo.gz (-c option: write output on standard out)

 Compress multiple files -- using pipe

cat file1 file2 | gzip –c >file.gz

ls | gzip –c >ls.gz

 decompress gz files

 gunzip foo.gz  gzip –d foo.gz

• The gz file will be replaced by the decompressed file

 gunzip -c foo.gz >foo.txt

 zcat file.gz  gunzip –c file.gz

 RAR (WinRAR)

 Support UTF

 On Ubuntu, package: unrar to extrat files from rar archives

1/16/2020Slide #26

openssl

“openssl” to encrypt a file

openssl rc2 –in hw1.tar.gz –out hw1.tar.gz.rc2 –k 123456

“openssl” to decrypt a file

openssl rc2 –d –in hw1.tar.gz.rc2 –out hw1.tar.gz –k 123456

1/16/2020Slide #27

Utilities for “print”
 In lab N328, lpstat -a #list all the available printers

 lpstat –d – shows the current default destination

 “lp”, “lpr”

 lpr –P laser329a filename

 lp –d laser329a filename (-d: destination)

 “a2ps” (anything to postscript)

 format files for printing on a postscript printer

 a2ps –P laser329a (--printer=laser329a) filename

• By default, print two columns (pages) per page

• “-R”: print in portrait

• --columns=1”: will print one column (page) per page

• More other options…

 Get more info with “man lp”, “man lpr”, “man a2ps”, “man

lpstat”, etc and the “see also…” at the end of the man pages

NOTE: For all your assignments, if hardcopy is required, you MUST use a2ps to

print out your work (two pages per sheet). Other formats are not accepted!

