
4/14/2020Slide #1

GNU Compiler Collection
GCC: originally referred to GNU C Compiler

 Richard Stallman, the founder of the GNU Project

 First release (1.00) 1987, C Compiler

 2.00 release in 1992, with C++ compiler …

 3.0 release in 2001, and 4.00 released in 2005; GCC 4.8
in CS Lab

GCCGNU Compiler Collection (Now)

 Compilers: gcc, c++, g++, gcj (java), f77, f90, etc.

 A portable compiler

• It runs on most platforms available today and produces
executable for many types of processors

Comprehensive online documentation:

http://gcc.gnu.org/onlinedocs/gcc

http://gcc.gnu.org/onlinedocs/gcc

4/14/2020Slide #2

Cross-Compiler

GCC is not only a native compiler but also

a Cross-Compiler

Cross-Compiling

Producing executable for a system different

from the one used by GCC itself

Used for embedded system development,

which normally small and not capable of

running a compiler

4/14/2020Slide #3

Source Code Compilation

 Compilation refers to the process of converting

a program from the textual source code in a

programming language, such as C or C++, into

machine code (binary file), the sequence of 1's

and 0's used for the Central Processing Unit

(CPU) of the computer.

 This machine code is then stored in a file

known as

 an executable file, sometimes also referred to as a

binary file.

4/14/2020Slide #4

Compile C/C++ Codes

 Compiler cmd: gcc |g++|c++ |cc

 Compile a simple C/C++ program on UNIX

 gcc –Wall hello.c –o hello

 c++ -Wall hello.cpp –o HelloWorld

• -Wall: turns on all the commonly used compiling warnings

• -o : name of the binary/exe file,

• a.out: the default executable in case –o is omitted

• To run the compiled program: ./hello or ./a.out

 The compiled program will have “x” permission for all (this is
done by the compiler during linking process)

 Compile several files
• gcc –Wall prog1.c prog2.c –o prog

 Compile files with external libraries

 c++ –Wall Hello.cpp Main.cpp –o helloworld –lm

4/14/2020Slide #5

Compiling Multiple Source Files

Two stages/steps:

 Compilation: build object files, normally ending with .o

 Create object files from source files with -c option

gcc –Wall –c prog1.c [-o prog1.o]

gcc –Wall –c prog2.c [–o prog2.o]

 Linking: link the objects and libraries to build the
executables

 Link, create executables from object files (*.o)

• gcc prog1.o prog2.o –o prog

Why using the stages to build an application?

 Separate the compiling and linking can save time in case that an
application contains many files

• Recompiling a large number of source codes can be time-consuming

• Only the modified file needs to be recompiled, then linked together
with others

4/14/2020Slide #6

Header Files

 System header files: #include <stdio.h>

 The compiler will search the system header file directories for
those header files enclosed with < >

 Default system header file path:
/usr/local/include/:/usr/include/

 Customer-defined header files
 #include “myheader.h”

 The compiler will search the current directory first before

searching the system header file directories.

 You can specify the header file search path during compilation
with complier’s –I option:

• -I/path/to/additional/header/files/

 There is also a set of environmental variables for this:
CPATH; C_INCLUDE_PATH; CPLUS_INCLUDE_PATH; OBJC_INCLUDE_PATH

 Never include path of headers in the source codes.

4/14/2020Slide #7

Libraries

 A library is a collection of precompiled object files
which can be linked into programs,

 such as C library provides all the C functions, or the math library
provides all the math functions, such as sin, sqrt, etc.

 External libraries

 You need to specify the names of the external libraries
containing the functions referenced in the source codes

• -lNAME, such as –lm in the previous example

 In case the libraries are not available in the standard library
directories/paths, the path needs to be specified as well

 Standard library path:

 /usr/local/lib/:/usr/lib/:/lib:/lib64:

 The order of the search path matters!!!

 There might be dependence among the libraries.

4/14/2020Slide #8

Link-Order of the Libraries
The traditional behavior of linkers is to search for external

functions from left to right in the libraries specified on the

command line

 The library containing the definition of a function should

appear after the source file in which it is called.
c++ –Wall Hello.cpp –lmlib Main.cpp –o helloworld

(Main.cpp has a function defined in libmlib library)

The above compilation will fail. Why?

c++ –Wall Hello.cpp Main.cpp –lmlib –o helloworld

When linking multiple libraries, same convention followed

 A library which calls an external function defined in another

library should appear before the library containing the function

• gcc –Wall data.c –lglpk –lmylib

• Where libglpk uses function defined in libmylib

 Rule of thumb:

 The most general one goes to the most right (the last)

4/14/2020Slide #9

Additional Include and Library Path

 headers & lib searching path with –I and –L compiler

options in-line during compilation

 gcc –Wall –I/opt/new/include/ -L/opt/new/lib file.c –o prog

 -I and –L can be repeated to add more paths for headers and libraries

respectively (just separated by white space)

gcc –Wall –I/opt/new1/include –I/opt/new2/include/

-L/opt/new1/libdir1 –L/opt/new2/libdir2 file.c –o prog

 Set the environmental variables in shell initialization files
such as .bashrc in bash
 export C_INCLUDE_PATH=/opt/new/include (for GCC)

 export CPLUS_INCLUDE_PATH=/opt/new/include (for G++)

 export LIBRARY_PATH=/opt/new1/lib:/opt/new2/lib

 These directories will be searched after those specified with

–L options in command line, and before the standard library
directories.

4/14/2020Slide #10

Search Order of the Lib Paths

First
 The in-line user-specified path: those specified with –
I or –L option (gcc/g++ compilation options) in cmd
line

Second: environment variables if defined
 C_INCLUDE_PATH for C codes

 CPLUS_INCLUDE_PATH for C++ codes

 LIBRARY_PATH for additional library paths

Last
 The standard library directories, such as /use/lib,

/lib, /lib64, etc

4/14/2020Slide #11

C/C++ Compiler Options

 -Wall turn on all the default warnings, suggest to use
always

 -o object/target file name

 -c compile without linking, create object files (*.o) only

 -Dfoo define a preprocessor macro

 -Idir -Ldir

 User-defined paths for additional libraries & header files

 -lfoo link against library libfoo (can be libfoo.a or libfoo.so, *.so
preferred)

 -O[n] optimization level (n: from 0 to 3), -O2 is mostly used,

 -Os optimization for small size of the executable, not speed

 -g include standard debugging information

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

4/14/2020Slide #12

Compiling with Optimization Flags

“Turning on optimization flag makes the compiler attempt to improve the
performance of the executable and/or reduce the size of code at the expense of
compilation time and possibly the ability to debug the program”

 Goals of compiling optimization

 increase the speed at run-time, program runs faster,

 or reduce the size of the executable,

 or make the program debuggable

Generally, it’s not possible to achieve all of them the same time

 The higher the optimization level, the more complex of

the compilation process, the longer compilation time, and

the harder to debug a program

 The optimization needs to be turned off for debugging compilation

 An optimization level is chosen with the command line
option -OLEVEL where LEVEL ranges from 0 to 3 & s

4/14/2020Slide #13

GCC Optimization

-Os: optimize for size

 to reduce the size of the executable

-O0 : default

 No optimization, compiling the code in the most

straightforward way, fast compilation

 It’s the option to compile programs for debugging

-O1 or –O

 Turn on the most common forms of optimization w/o

sacrificing the speed / space trade off

 Executable should be smaller and faster than –O0

 More expensive optimizations, such as instruction

scheduling are not used at this level

4/14/2020Slide #14

More Optimization Levels
 -O2: Turns on further optimizations in addition to

those used by –O1

 Include instruction scheduling

 Only optimizations that do not require any speed-space tradeoffs
are used

• So the size of the executables should be about the same as those
created with –O1

• But compilation takes longer time requires more memory

• Generally, this is the best optimization level and it is the default
optimization level for application release package

 -O3: Turns on more expensive optimizations, takes
longer time to compilation
 Increase the speed by increasing the size of the executable

 Not a preferred optimization level, Sometimes, it could be
slower than –O2

 Normally: -O0 for debugging, -O2 for release
 Ex: c++ -Wall –O2 hello.cpp –o hello

4/14/2020Slide #15

Compiling with Debugging Enabled

 Normally, an executable file is simply the sequence of

machine code instructions produced by the compiler.

 No variable names, or line numbers

 The above info are needed in tracking running errors

• Trace back from a specific machine instruction to the corresponding

line in the source file

 The debug compilation option provided by GCC (-g)

 Storing the names and source code line-numbers of functions and

variables in a symbol table in the object file or executable.

 The executable will be debuggable with a debugger, such

as GDB (GNU Debugger)

 GDB allows the values of variables to be examined while the

program is running.

4/14/2020Slide #16

Two Types of Libraries

Static libraries

Are simply collections of object files arranged by
the ar (archciver) utility

Name of library file ends with (conventionly) .a

Created by a special “ar” program as the

following

ar rcs libempolyee.a employee.o staff.o

 r Includes the object files in the library: replacing any

object files already in the archive that have the same names.

 cSilently create the library if it does not already exist.

 s Maintain the table mapping symbol names to object file

names.

4/14/2020Slide #17

Shared Libraries

 A shared library or shared object is a file that is

intended to be shared by executable files.

 Modules used by a program are loaded from individual shared

objects into memory at load time or run time, rather than being

copied by a linker when it creates a single monolithic

executable file for the program.

 Ending with “.so” referred to Shared Objects, plus

version number, similar to the “.dll” on Windows

System

 Created by a special option of gcc during compilation

gcc –fPIC –Wall –O2 foo.c –o foo.o

gcc –shared –o libfoo.so foo.o

4/14/2020Slide #18

Programs Linked against

Static Libraries

 The machine codes from the object files for any external

functions used by the program are copied from the library

into the final executable

 Pros

 The program is a stand-alone program, has better

portability. No need to install the external libraries on the

host system

Cons

 Takes large space: due to large executable file

 Whenever there is change in the library or the program, the

whole application needs to be rebuilt

4/14/2020Slide #19

Programs Linked Against

Shared Libraries

 The executable contains only a small table of the
functions required from the dependent libraries, instead
of copying the complete machine code from the object
files for the external functions

 The machine code for the external functions is
copied/loaded into memory from the shared libraries on
disk by the OS during program execution a process
referred to as dynamic linking.

 Small executable files, saves disk space

 Application and share libraries can be maintained separately

 Updating libraries without the need of recompiling the application

 Updating the applications without the need to recompiling the libraries.

4/14/2020Slide #20

Applications built against shared

libraries vs. against static libraries

Advantages (.so)

 Save disk space

• Only one copy of the library file sits on the disk and shared by

many programs

 Small program, save memory, overall the system can

run faster

 No need to rebuild the program in case of library bug

fixing as long as no changes in the APIs of the library

Disadvantages

 Not as portable as the one built against static library
• The system (the program is going to run) must provide the exact

same shared library as the ones the program was built on the build

system.

4/14/2020Slide #21

Program Execution Built with

External Libraries
 No problem in executing a program built against static

libraries: portable

 Execute a program built against shared libraries

 The shared libraries need to be available and ready to be

loaded into memory when needed

 Loader’s search path:

• By default, it’s a predefined set of system directories, probably
defined in file: /etc/ld.so.conf, etc

• you need add new path for shared libraries which are not installed

in those default paths

 Environmental variable: LD_LIBRARY_PATH

 Define this in your current session of shell

export LD_LIBRARY_PATH=/opt/your/path/lib:$LD_LIBRARY_PATH

 Define it in your shell initialization file, such as .bashrc

