
4/14/2020Slide #1

GNU Compiler Collection
GCC: originally referred to GNU C Compiler

 Richard Stallman, the founder of the GNU Project

 First release (1.00) 1987, C Compiler

 2.00 release in 1992, with C++ compiler …

 3.0 release in 2001, and 4.00 released in 2005; GCC 4.8
in CS Lab

GCCGNU Compiler Collection (Now)

 Compilers: gcc, c++, g++, gcj (java), f77, f90, etc.

 A portable compiler

• It runs on most platforms available today and produces
executable for many types of processors

Comprehensive online documentation:

http://gcc.gnu.org/onlinedocs/gcc

http://gcc.gnu.org/onlinedocs/gcc

4/14/2020Slide #2

Cross-Compiler

GCC is not only a native compiler but also

a Cross-Compiler

Cross-Compiling

Producing executable for a system different

from the one used by GCC itself

Used for embedded system development,

which normally small and not capable of

running a compiler

4/14/2020Slide #3

Source Code Compilation

 Compilation refers to the process of converting

a program from the textual source code in a

programming language, such as C or C++, into

machine code (binary file), the sequence of 1's

and 0's used for the Central Processing Unit

(CPU) of the computer.

 This machine code is then stored in a file

known as

 an executable file, sometimes also referred to as a

binary file.

4/14/2020Slide #4

Compile C/C++ Codes

 Compiler cmd: gcc |g++|c++ |cc

 Compile a simple C/C++ program on UNIX

 gcc –Wall hello.c –o hello

 c++ -Wall hello.cpp –o HelloWorld

• -Wall: turns on all the commonly used compiling warnings

• -o : name of the binary/exe file,

• a.out: the default executable in case –o is omitted

• To run the compiled program: ./hello or ./a.out

 The compiled program will have “x” permission for all (this is
done by the compiler during linking process)

 Compile several files
• gcc –Wall prog1.c prog2.c –o prog

 Compile files with external libraries

 c++ –Wall Hello.cpp Main.cpp –o helloworld –lm

4/14/2020Slide #5

Compiling Multiple Source Files

Two stages/steps:

 Compilation: build object files, normally ending with .o

 Create object files from source files with -c option

gcc –Wall –c prog1.c [-o prog1.o]

gcc –Wall –c prog2.c [–o prog2.o]

 Linking: link the objects and libraries to build the
executables

 Link, create executables from object files (*.o)

• gcc prog1.o prog2.o –o prog

Why using the stages to build an application?

 Separate the compiling and linking can save time in case that an
application contains many files

• Recompiling a large number of source codes can be time-consuming

• Only the modified file needs to be recompiled, then linked together
with others

4/14/2020Slide #6

Header Files

 System header files: #include <stdio.h>

 The compiler will search the system header file directories for
those header files enclosed with < >

 Default system header file path:
/usr/local/include/:/usr/include/

 Customer-defined header files
 #include “myheader.h”

 The compiler will search the current directory first before

searching the system header file directories.

 You can specify the header file search path during compilation
with complier’s –I option:

• -I/path/to/additional/header/files/

 There is also a set of environmental variables for this:
CPATH; C_INCLUDE_PATH; CPLUS_INCLUDE_PATH; OBJC_INCLUDE_PATH

 Never include path of headers in the source codes.

4/14/2020Slide #7

Libraries

 A library is a collection of precompiled object files
which can be linked into programs,

 such as C library provides all the C functions, or the math library
provides all the math functions, such as sin, sqrt, etc.

 External libraries

 You need to specify the names of the external libraries
containing the functions referenced in the source codes

• -lNAME, such as –lm in the previous example

 In case the libraries are not available in the standard library
directories/paths, the path needs to be specified as well

 Standard library path:

 /usr/local/lib/:/usr/lib/:/lib:/lib64:

 The order of the search path matters!!!

 There might be dependence among the libraries.

4/14/2020Slide #8

Link-Order of the Libraries
The traditional behavior of linkers is to search for external

functions from left to right in the libraries specified on the

command line

 The library containing the definition of a function should

appear after the source file in which it is called.
c++ –Wall Hello.cpp –lmlib Main.cpp –o helloworld

(Main.cpp has a function defined in libmlib library)

The above compilation will fail. Why?

c++ –Wall Hello.cpp Main.cpp –lmlib –o helloworld

When linking multiple libraries, same convention followed

 A library which calls an external function defined in another

library should appear before the library containing the function

• gcc –Wall data.c –lglpk –lmylib

• Where libglpk uses function defined in libmylib

 Rule of thumb:

 The most general one goes to the most right (the last)

4/14/2020Slide #9

Additional Include and Library Path

 headers & lib searching path with –I and –L compiler

options in-line during compilation

 gcc –Wall –I/opt/new/include/ -L/opt/new/lib file.c –o prog

 -I and –L can be repeated to add more paths for headers and libraries

respectively (just separated by white space)

gcc –Wall –I/opt/new1/include –I/opt/new2/include/

-L/opt/new1/libdir1 –L/opt/new2/libdir2 file.c –o prog

 Set the environmental variables in shell initialization files
such as .bashrc in bash
 export C_INCLUDE_PATH=/opt/new/include (for GCC)

 export CPLUS_INCLUDE_PATH=/opt/new/include (for G++)

 export LIBRARY_PATH=/opt/new1/lib:/opt/new2/lib

 These directories will be searched after those specified with

–L options in command line, and before the standard library
directories.

4/14/2020Slide #10

Search Order of the Lib Paths

First
 The in-line user-specified path: those specified with –
I or –L option (gcc/g++ compilation options) in cmd
line

Second: environment variables if defined
 C_INCLUDE_PATH for C codes

 CPLUS_INCLUDE_PATH for C++ codes

 LIBRARY_PATH for additional library paths

Last
 The standard library directories, such as /use/lib,

/lib, /lib64, etc

4/14/2020Slide #11

C/C++ Compiler Options

 -Wall turn on all the default warnings, suggest to use
always

 -o object/target file name

 -c compile without linking, create object files (*.o) only

 -Dfoo define a preprocessor macro

 -Idir -Ldir

 User-defined paths for additional libraries & header files

 -lfoo link against library libfoo (can be libfoo.a or libfoo.so, *.so
preferred)

 -O[n] optimization level (n: from 0 to 3), -O2 is mostly used,

 -Os optimization for small size of the executable, not speed

 -g include standard debugging information

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html

https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

https://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc-4.5.2/gcc/Optimize-Options.html

4/14/2020Slide #12

Compiling with Optimization Flags

“Turning on optimization flag makes the compiler attempt to improve the
performance of the executable and/or reduce the size of code at the expense of
compilation time and possibly the ability to debug the program”

 Goals of compiling optimization

 increase the speed at run-time, program runs faster,

 or reduce the size of the executable,

 or make the program debuggable

Generally, it’s not possible to achieve all of them the same time

 The higher the optimization level, the more complex of

the compilation process, the longer compilation time, and

the harder to debug a program

 The optimization needs to be turned off for debugging compilation

 An optimization level is chosen with the command line
option -OLEVEL where LEVEL ranges from 0 to 3 & s

4/14/2020Slide #13

GCC Optimization

-Os: optimize for size

 to reduce the size of the executable

-O0 : default

 No optimization, compiling the code in the most

straightforward way, fast compilation

 It’s the option to compile programs for debugging

-O1 or –O

 Turn on the most common forms of optimization w/o

sacrificing the speed / space trade off

 Executable should be smaller and faster than –O0

 More expensive optimizations, such as instruction

scheduling are not used at this level

4/14/2020Slide #14

More Optimization Levels
 -O2: Turns on further optimizations in addition to

those used by –O1

 Include instruction scheduling

 Only optimizations that do not require any speed-space tradeoffs
are used

• So the size of the executables should be about the same as those
created with –O1

• But compilation takes longer time requires more memory

• Generally, this is the best optimization level and it is the default
optimization level for application release package

 -O3: Turns on more expensive optimizations, takes
longer time to compilation
 Increase the speed by increasing the size of the executable

 Not a preferred optimization level, Sometimes, it could be
slower than –O2

 Normally: -O0 for debugging, -O2 for release
 Ex: c++ -Wall –O2 hello.cpp –o hello

4/14/2020Slide #15

Compiling with Debugging Enabled

 Normally, an executable file is simply the sequence of

machine code instructions produced by the compiler.

 No variable names, or line numbers

 The above info are needed in tracking running errors

• Trace back from a specific machine instruction to the corresponding

line in the source file

 The debug compilation option provided by GCC (-g)

 Storing the names and source code line-numbers of functions and

variables in a symbol table in the object file or executable.

 The executable will be debuggable with a debugger, such

as GDB (GNU Debugger)

 GDB allows the values of variables to be examined while the

program is running.

4/14/2020Slide #16

Two Types of Libraries

Static libraries

Are simply collections of object files arranged by
the ar (archciver) utility

Name of library file ends with (conventionly) .a

Created by a special “ar” program as the

following

ar rcs libempolyee.a employee.o staff.o

 r Includes the object files in the library: replacing any

object files already in the archive that have the same names.

 cSilently create the library if it does not already exist.

 s Maintain the table mapping symbol names to object file

names.

4/14/2020Slide #17

Shared Libraries

 A shared library or shared object is a file that is

intended to be shared by executable files.

 Modules used by a program are loaded from individual shared

objects into memory at load time or run time, rather than being

copied by a linker when it creates a single monolithic

executable file for the program.

 Ending with “.so” referred to Shared Objects, plus

version number, similar to the “.dll” on Windows

System

 Created by a special option of gcc during compilation

gcc –fPIC –Wall –O2 foo.c –o foo.o

gcc –shared –o libfoo.so foo.o

4/14/2020Slide #18

Programs Linked against

Static Libraries

 The machine codes from the object files for any external

functions used by the program are copied from the library

into the final executable

 Pros

 The program is a stand-alone program, has better

portability. No need to install the external libraries on the

host system

Cons

 Takes large space: due to large executable file

 Whenever there is change in the library or the program, the

whole application needs to be rebuilt

4/14/2020Slide #19

Programs Linked Against

Shared Libraries

 The executable contains only a small table of the
functions required from the dependent libraries, instead
of copying the complete machine code from the object
files for the external functions

 The machine code for the external functions is
copied/loaded into memory from the shared libraries on
disk by the OS during program execution a process
referred to as dynamic linking.

 Small executable files, saves disk space

 Application and share libraries can be maintained separately

 Updating libraries without the need of recompiling the application

 Updating the applications without the need to recompiling the libraries.

4/14/2020Slide #20

Applications built against shared

libraries vs. against static libraries

Advantages (.so)

 Save disk space

• Only one copy of the library file sits on the disk and shared by

many programs

 Small program, save memory, overall the system can

run faster

 No need to rebuild the program in case of library bug

fixing as long as no changes in the APIs of the library

Disadvantages

 Not as portable as the one built against static library
• The system (the program is going to run) must provide the exact

same shared library as the ones the program was built on the build

system.

4/14/2020Slide #21

Program Execution Built with

External Libraries
 No problem in executing a program built against static

libraries: portable

 Execute a program built against shared libraries

 The shared libraries need to be available and ready to be

loaded into memory when needed

 Loader’s search path:

• By default, it’s a predefined set of system directories, probably
defined in file: /etc/ld.so.conf, etc

• you need add new path for shared libraries which are not installed

in those default paths

 Environmental variable: LD_LIBRARY_PATH

 Define this in your current session of shell

export LD_LIBRARY_PATH=/opt/your/path/lib:$LD_LIBRARY_PATH

 Define it in your shell initialization file, such as .bashrc

