
3/6/2019Slide #1

Creating a Shell Script

 A bash script is a file containing a list of commands to

be executed by the bash shell

 First Line of a shell script (#!/bin/bash)

 Specifies which shell program (here the bash) will be used to

interpret the script

 Second line is a comment starting with “#” (not #!)

 The rest are shell commands

#!/bin/bash

This is simple.sh, a simple bash script

echo “Hello, I am $LOGNAME”

echo Today is `date`

echo Bye-bye

echo “the PID of this is “ $$

3/6/2019Slide #2

Execute a Bash Script

source simple.sh

 not commonly used, not recommended

Method One
 Add execution permission to the script

If you run the script: script.sh, you will get error: command

not found if the current directory is not included in PATH,

two ways to solve this

• Add the current dir to PATH : PATH=$PATH:./

• Provide the path to run the script as: ./simple.sh

– Means to run the script from current directory

Method Two
 Type: sh (or bash) script.sh

• Here sh refers to bash (a symbolic link to bash) in the CS

lab systems

3/6/2019Slide #3

Debugging in Bash

With -n option when running the script

 Check syntax error in the script

 Will not execute the script

 bash –x scriptname

Turn on echo option, display each line in script (with variable

expansion/substation) before execution

 bash –v scriptname

 Verbose option, display each line (without variable

expansion/substation) before execution

 Turn on/off the above options in the current shell with “set”

 Turn ON with set –x or set –v

 Turn OFF: set +x or set +v

3/6/2019Slide #4

Read from User Input (stdin)
The read command

echo –n "please enter student name & grade:"

read name grade

echo name: $name , grade: $grade

Read for multiple variables

read var1 var2 var3 var4

 No commas to separate the variables

 Values are read from standard input and assigned to each

variable

• If more words are typed in, then the excess get assigned to the

very last variable

• If more variables are assigned than the variables given, the excess

variables are empty

Command Line Arguments

The command line arguments can be referenced in

scripts with positional parameters

• $0: the script/program itself

• $1: the first argument

• $2: the second argument, … ${10}

 Example:

sh simple.sh apple pear orange

• $0simple.sh

• $1 apple

• $2 pear

• $3 orange

• $4??? (empty)

3/6/2019Slide #6

Positional Parameters

 $0 references the name of the script

 $1 … ${10} references individual positional parameters

• You need use {} for index of larger than 9, ex: ${10}

• $10  $1 + 0 ???

 $#: the number of command line arguments (or number

of position parameters excluding the program itself!!!)

 $*: lists all the positional parameters, separated by a

white space, $1 $2 $3

 $@: list of all the arguments, $1 $2 $3

 There is difference b/w $@ & $* when double quotes

are used.

 “$*” “$1 $2 $3” (a string)

 “$@”  “$1” “$2” “$3” (a list of string => an array)

3/6/2019Slide #7

The shift command

shift command-shell built-in

command

• help shift

• Shifts the positional parameters to the left

a specified number of times,

•shift 5

– shifts 5 times to the left

– shifts left once if no number specified

$0 is not affected by “shift” command, it is

still “storing” the program name

3/6/2019Slide #8

#!/bin/sh

bash script fruit.sh

echo "\$0 is $0"

echo "\$1 is $1"

echo "\$2 is $2"

echo "\$3 is $3"

shift 2

echo "After shift 2 "

echo "\$0 is $0"

echo "\$1 is $1"

echo "\$2 is $2"

echo "\$3 is $3"

./fruit.sh apple pear peach

$0 is ./fruit.sh

$1 is apple

$2 is pear

$3 is peach

After shift 2

$0 is ./fruit.sh

$1 is peach

$2 is

$3 is

What if you run the script as:
sh fruit.sh apple pear peach

3/6/2019Slide #9

Arithmetic

 Bash can perform very simple integer operations

• You can always use awk to process float numbers

 An integer variable can be declared with the shell built-
in command declare, then followed with value

assignment.

• declare –i num #Create an integer variable

• num=5+5; echo $num  10

• num=4*6; echo $num  24

• num=6.5 #this will get error, NO FLOATING NUMBER OPERATION

• If you attempt to assign a string to an integer variable, bash

assigns 0 to the variable

num=TODAY; echo $num  0

 NO SPACE AROUND “=” and “+”, “*”

3/6/2019Slide #10

The ‘let’ Command

 The let command: A bash built-in command used to

Evaluate arithmetic expressions

 let x=2+5

 let y=“ x + 5 ”

 let y=‘ 2 + 5 ’

 let y+=2

no space around “=”, space is allowed if quotes are used.

$ sign is not used inside ‘let’

 Arithmetic operators: + - * / %

More have been added now, check online with

help let

3/6/2019Slide #11

Numeric Expression Expansion

 The square-brackets or double parentheses can be used
to substitute the let command

• $[expression]

• sum=$[5 + 4 – 2]

• This will be deprecated in future Bash

• $((expression))

• echo $((5+4-2))

• num=10;

• num=$(($num+10));

• Num=$(($num+10))

Note: Need to have a space for the [and], ((, and)) in the old version

shell, though it seems ok in the new version bash on CS Linux systems

3/6/2019Slide #12

The expr Command

Evaluate arithmetic expressions

Usage: expr EXPRESSION

Operations

• * / % + -

• Must have space around the operators

Examples

• expr 1 + 4  5

• expr 1+4  1+4 (no space!!)

• expr 5 * 4

• expr 11 % 3

• num=1; sum=`expr $num + 10`; echo $sum

3/6/2019Slide #13

Built-in Test Operation

 Variable comparison: [arg1 opt arg2]

• MUST have a space after “[” and before “]” and around opt sign,

strings/variables need to be quoted with double quotes

 opt for String Testing

• [string1 = string2] <=> [string1 == string2]

• [string1 != string2]

• -n str1 : str1 is not a null (defined)

• -z str1 : str1 is zero length (empty)

 opt for Numerical Comparison

• Options: -eq, -ne, -lt, -le, -gt, -ge

• Ex: [num1 –eq num2]

 Logical comparison with ||, &&, and ! (not)

File Attribute Checking

Operator True if

[-d file] file exists and is a directory

[-e file] file exists (any type)

[-f file] file exists and is a regular file

[-r file] You have read permission

[-s file] file exits and is not empty

[-w file] You have write permission

[-x file]
You have execute permission on file

For directory, it’s the search permission

[file1 –nt file2] file1 is newer than file2

[file1 –ot file2] file1 is older than file2

[-x f1 –a ! –d f1] Logical AND

[-x file –o –d file] Logical OR

Note: No space between “-” and the option

3/6/2019Slide #15

The if/then/fi Command

if command1

then

command2

command3

fi

The exit status of command1 will be examined. Command2

and command3 will be executed only if the exit status of

command1 is zero (successful)

if grep “$name” /etc/passwd > /dev/null 2>&1

then

echo Found $name

fi

3/6/2019Slide #16

The if/else Command

if cmd1

then

cmd2

cmd3

else

cmd4

fi

#!/bin/sh -x

export name=cs390

echo name=$name

echo number of argument: $#

if [$# -lt 2]; then

echo "need two arguments!"

exit 1

fi

file=$1

str=$2

if grep "$str" $file ; then

echo Found $str in $file

else

echo "$str is not in $file"

exit 1

fi

if cmd1; then

cmd2;cmd3

else

cmd4

fi

3/6/2019Slide #17

#!/bin/bash

if [! –e $1]; then

echo file $1 does not exist.

exit 1

fi

if [-d $1]; then

echo – n “$1 is a directory that you may ”

if [! –x $1]; then

echo –n “not ”

fi

elif [-f $1]; then

echo “$1 is a regular file.”

else

echo “$1 is a special type of file.”

fi

if [-r $1 –a –w $1]; then

echo “You have read and write permission on file $1”

fi

if [-x $1 –a ! –d $1]; then

echo “you have execute permission on file $1”

fi

Flow Control with if/then/elif/else/fi

3/6/2019Slide #18

The “case”

case $type in

[Qq]) echo –n “Please enter quiz grade: ”

read gradeQ

;;

H|h) echo –n “Please enter hw grade:”

read gradeH

;;

M|m) echo –n “Please enter test grade: ”

read gradeM ;;

F|f) echo –n “Please enter final grade:”

read gradeF

;;

*) echo “Wrong grade type!”

;;

esac

3/6/2019Slide #19

The select Command

 select is not available

in other conventional

programming

languages

 Generates a menu of

each item in the list and

indexes the item

 Repeats the process

forever

 Normally used together

with “case”

filelist="ab abc ad QUIT"

select name in $filelist ; do

case $name in

"QUIT") echo "Exiting."

break

;;

*) echo "You picked $name "

chmod go-rwx "$name"

;;

esac

done

1) ab

2) abc

3) ad

4) QUIT

#?

3/6/2019Slide #20

The Looping Commands

#!/bin/bash

answer="yes"

while ["$answer" == "yes"]

do

echo -n “Build grade record for student (yes or no): "

read answer

if [“$answer” == "yes"] ; then

echo You have selected to enter student record!

else

echo You have done with entering student score!

fi

done

answer="yes"

until ["$answer" == "no"]

do

echo -n "Do you want to build up score record for students (yes or no): "

read answer

…………………………

done

3/6/2019Slide #21

The “for” Loop

for file in `ls -1`

do

echo file is $file

done

for file in `ls -1`; do

echo file is $file

done

filelist=`ls -1`

for file in $filelist; do

echo file is $file

done

filelist=“apple peach”

for file in $filelist; do

echo file is $file

done

3/6/2019Slide #22

 If step is ‘1’
for i in {1..10}; do echo $i; done

 Otherwise use ‘seq’: print a sequence of numbers
#Usage: seq first increment last

for i in `seq 1 2 10`; do echo $i; done

for i in $(seq 1 2 10); do echo $i; done

loop over range of integers

3/6/2019Slide #23

Looping Control Commands

break

• Shell built-in command

• Used to force immediate exit from a loop, NOT from a
program

continue

Returns control to the top of the loop (skip the rest inside the
loop)

exit

• Exit the program regardless where it is
• Can be inside a loop, or function

• Be careful when using “exit”

• Normally provide an integer for the exit status: exit n
• 0 for success

• 1 or other integer for failure or different type of errors

3/6/2019Slide #24

Function
 Function is a script-within-a-script

 Defining a function
• function functname { shell commands }

• functname () { shell commands }

 Function arguments

• Just like running a script and has its own position parameters

• Can have its own local variable defined using local var inside the

function

• Conventionally, functions are defined (put) before the main part inside

the script

 Function’s return Value

• Using return cmd: return num # num from 0-255,

• The value is stored in the special variable ?

• Assign the STDOUT of the function to a variable using
var=$(funcname) (similar to command substitution)

3/6/2019Slide #25

#!/bin/bash

finfo()

{

echo Got $1

}

for filename in $@ ; do

finfo $filename

echo

done

To execute the ` script
./fileinfo2.sh `ls`

Or

sh fileinfo2.sh `ls`

3/6/2019Slide #26

The trap Command
 Shell scripts terminate when an interruption signal is

received (such as through key press)

 Put “trap” statement before other shell commands inside

the shell script

 The trap command allows you to control the way a program

behaves instead of termination when it receives certain

signals, such as the following:
 Behave normally (the default action)

 Ignore the signal

 Do some cleanup (signal handling function) before exiting

trap ‘command_list’ signal_list

 Examples
 Ignore: trap “” 1 2  trap “” HUP INT

 Do something: trap ‘ rm tmp*; exit 1’ 1 2 15

When 1-SIGHUP or 2-SIGINT or 15- SIGTERM signal is received, the script will

cleanup tmp files and exit

3/6/2019Slide #27

#!/bin/sh

a bash script for testing “trap” command

trap "echo ignore interrupt " 2 3 15

num=$1

i=0

while ["$i" -lt "$1"]

do

let i++

echo I will take one minute nap...

sleep 60

done

To run the script:

sh trap.sh NUM

To terminate such process

kill -9 PID

3/6/2019Slide #28

Shell Variable: Array

 Index starts at zero

 Created on the fly
• names[0]=Jone; names[1]=Amy; names[2]=Alex

• names=(Jone Amy Alex) # separated by space, NOT

comma

 ${names[1]}: Reference an element:

 ${names[@]}: List all the elements of an array:

 ${#names[@]}:The number of elements of an array

 Here @ can be replaced with *  ${#names[*]}:

 Length of a string: ${#str}

• echo ${#names[1]}  3

• echo $#names 4 (default to the first element)

• student=“John”; echo ${#student}  4

 Curly brackets are needed

3/6/2019Slide #29

Positional Parameters And Array

 bash fruit.sh apple pear peach

argvs=$@; echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple pear peach, opt2=

argvs=$*; echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple pear peach, opt2=

argvs=$#; echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=3, opt2=

argvs=“$@”; echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple pear peach, opt2=

argvs=“$*”; echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple, opt2=pear

argvs=($*); echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple, opt2=pear

argvs=(“$@”); echo opt1=${argvs[0]}, opt2=${argvs[1]}

 opt1=apple, opt2=pear

3/6/2019Slide #30

Read the whole file into array with “readarray”

readarray files < ls.txt

read each line into array

read -r -a property <<< ${files[3]}

echo "length " ${#property[@]}

echo ${property[8]}

Read line by line from file “ls.txt”

while read -r line

do

echo $line

done < ls.txt

Read from File

