
Slide #1 3/9/2020

UNIX Shells
 Bourne Shell -- sh

 Written by At &T
 A shell commonly used by the administrator when running as root
 Simpler and faster than C shell scripts
 Default shell prompt: $

 C shell -- csh
 Developed by Berkley with added extra features

• history, aliasing, etc
 Default shell prompt: %

 Korn shell -- ksh
 Developed by David Korn at AT&T
 Added more features from C shell
 Default shell prompt: $

Slide #2 3/9/2020

Linux Shells

GNU Bourne Again Shell – bash
 The Linux default shell
 An enhanced Bourne shell
 The most popular shells used by UNIX and Linux users
 Default prompt: $

TC shell -- tcsh
 An enhanced but completely compatible version of

the Berkeley UNIX C shell, csh(1).
 Default prompt: >

**Note: C shell and tc shell are not installed on CS Lab systems

Slide #3 3/9/2020

Which Shell Are You Using?
shell environmental variable: SHELL

 echo $SHELL
 printenv SHELL

Note:
Without arguments, printenv will display all the environment variables
In CS lab, the default shell is bash, unless you change it to a different shell

chsh command
 Run chsh, it will prompt you for password, then the

login shell you prefer
/etc/shells

• Lists all the available shells on the system
• chsh must use one of the shells listed in file
/etc/shells

Slide #4 3/9/2020

Some Useful Files Under $HOME

 .bash_profile/.profile
 Set env, such as umask, PATH, etc

 .bashrc: set command alias, functions, etc

 bash executes these files in order when login (interactive)
/etc/profile  ~/.bash_profile  ~/.bash_login 
~/.profile

It stops when a file is found and executed

 bash executes ~/.bash_logout if exists

When bash started (not through login)
/etc/bash.bashrc  ~/.bashrc

.bash_login .bash_logout .bash_profile .bashrc (possible .profile)

Slide #5 3/9/2020

Interactive Shell Usage

 Type command at the prompt ($, %,or >) with
arguments and/or options, this command line is ended
with a new line

 The shell reads a line of input (the command line) and
parses it : breaking the line into words, called tokens,
separated by space or tab

 The first word is either a built-in command, or an
executable program located somewhere on the disk

Slide #6 3/9/2020

Command Line Processing

For shell-built-in command, the shell will
execute it internally

For executable program, the shell will
search the directories listed in the PATH
environmental variable
 The shell will fork a new process (a child

process) and then execute the program with
exec

 The shell will report the status of the exiting
program when it finishes

 A prompt will return (appear)

Slide #7 3/9/2020

Program Exit Status: ?
When a command/program terminates, it returns

an exit status to the parent process (or parent
shell)

The value of exit status
 The exit status is a number in [0-255]
 0 – the command was successful in its execution
 Non-zero – the command fails in some way

127 – command is not found by the shell

The special shell variable ? is set to the value of
the exit status of the last executed command
 To check the exit status of the immediate previous

executed cmd
echo $?

Slide #8 3/9/2020

Multi-commands in a Command Line
Multiple commands at one line separated by “;”

 ls; pwd; date > output
 (ls; pwd; date) > output

What’s the difference of the output from the above two
command lines?

Conditional execution of commands
 cmd1 && cmd2

• cmd2 executes only cmd1 is successful ($?==0)
find . –name hw5.sh && ./hw5.sh

 cmd1 || cmd2
• cmd2 executes if cmd1 fails

grep cs390 2>log.err || mail -s “failed” linh@uah.edu <log.err

Slide #9 3/9/2020

Shell and subshell
A subshell is a new shell that is executed

under the current shell
 Subshell is a child process of the shell where it is

created
 Sub shell has no knowledge of the local variables

defined in its parent shell
 Subshell cannot change variables defined in its

parent shell
 Only environmental variables of current (parent)

shell are available to the subshells

To terminate/exit the subshell using “exit”
command

Slide #10 3/9/2020

Running script/commands
Normally, a shell script is run by: bash script.sh

 it will fork a child process (a subshell) to execute
the program

 The variables in the sub shell will not be available to its
parent shell, the local variables defined in the parent’s
shell are also not available to the subshell

There are two special programs: dot (.) /source
 “source” command will run the commands of the script

within the current shell
 The source or . (dot) command normally is used to

execute the above initialization files
a) source .bashrc
b) . .bashrc

Slide #11 3/9/2020

Shell Variables
 Variable name must start with a letter or _

Two types of variables

 Environmental (global) variables
 Variables are available to the current shell and its subshells

 Using command printenv to get the current shell settings
 Ex: PATH,HOME,SHELL,LOGNAME,PWD,PS1,PS2,
HOSTNAME,USER, etc.

 Set/define environment variables
• Method 1: VARNAME=“value”; export VARNAME
• Method 2: export VARNAME=“value”

 More env variables are listed by running “env” or Table 8.1

 Local variables
 Defined by the user, available only to the current shell , not to its

parent nor to its sub shells

Slide #12 3/9/2020

The PATH variable
 A colon-separated list of directories

 Used by the shell when searching for the command

 System-wide PATH can be defined in either
/etc/profile or /etc/bashrc or
/etc/bash.bashrc

 User-defined path is either in .profile, .bash_profile,
.bashrc or/and .bash_profile under your $HOME directory
 To add new directory to the existing path
PATH=$PATH:~/cs390:~/local/bin:/opt/usr/bin

 Check the path value
 printenv PATH (NO $ here)

 echo $PATH

Slide #13 3/9/2020

The Prompt (PS1 & PS2)
 Prompt string settings

 \h|\H: hostname
 \u: username of the current user
 \w: the current working directory
 \W: the basename of the current working directory
 \!: the history number of this prompt

 PS1: primary bash prompt, “$” by default for bash, can
be reset using:
 PS1=“[\u@\h \W]\% ”
 PS1=“[\u@\h]\> ”

 Really confusing if PS1=“” -

 PS2: secondary bash prompt, “>” by default
 It’s for uncompleted command, or more input is expected
 Ex: echo “ this is cs390 

Slide #14 3/9/2020

Reference Value of Variables

 Prefix a “$” sign to variable name, $varname when
referencing a variable for its value

 The echo command and its options
 -n: suppress newline at the end of a line output
 -e: allows interpretation of the escape sequences, \t,
echo “you are so \t nice ” you are so \t nice
echo –e “you are so \t nice ”  you are so
nice

 echo ${varname} echo $varname
• Use curly bracket for string concatenation
• name=${variable}ABC

 printf
 printf “The number is %.2f \n” 100

Slide #15 3/9/2020

Quoting

Used to protect special meta-characters from
interpretation and to prevent parameter
expansion
 Special metacharacters that require to be quoted

• ; & < > | () { } $ \

Three types of quoting
 Matched double quotes: “”
 Matched single quotes:‘ ’
 Back slash: \

Slide #16 3/9/2020

 Single quotes
 Enclosing characters in single quotes preserves the literal

meaning of all the characters
 echo ‘$PATH’  $PATH

 Double quotes
 Enclosing characters within double quotes preserves the literal

meaning of all characters except dollar sign ($), backquote (`),
and backslash (\).

echo “here are 5 space: . ” (five space)
echo here are 5 space: . (only one space displayed!)

 Backslash \
 Preserves the literal meaning of the following character, with

the exception of 〈newline〉.
 A backslash preceding a 〈newline〉 is treated as a line

continuation.
To get the $ printed echo It costs me\$500
To get the \ printed echo \\n  \n

Slide #17 3/9/2020

Shell Special Variables
 Consisting of a single character
 Preceding $ to access the value stored in the variable

Variable Meaning

$
The PID of the current shell/process
echo $$

?

The exit value (exit status or return) of the last
executed command, a successful process returns 0,
none zero otherwise
echo $?

!
The PID of the last job put in the background
echo $!

Slide #18 3/9/2020

Shell HISTORY

 Bash will keep track of command history saved in file
.bash_history under your home directory

 The length of the history commands is defined by
environment variable HISTSIZE
 echo $HISTSIZE  1000

 The size can be reset
 export HISTSIZE=100

 The history file will be updated at the time of logout
 History command history [n]

 List the last n commands in the shell

Slide #19 3/9/2020

Utilization of Shell History
Short cut to run the previous command

 !!
The previous command

 !123
• Execute the command of command # 123

• The number can be obtained from running “history” command

 !name
• The first command which matches name

 ctrl-r string
• Reverse-search for string starting from the end of the history

file, press tab key when found the matched one

Slide #20 3/9/2020

alias
 Making/giving another name for a command
 Creating alias with shell built-in command alias

 Use single or double quotes if there is space in the value
 The following can be put in file .bashrc
alias rm=‘rm –i’
alias ll=‘ls –l’
alias mv=‘mv –i’
alias sshzeta=‘ssh linh@zeta.itsc.uah.edu’
alias cd390=‘cd cs390_Sp16’

 Multi-commands can be combined into one line separated by “;”
alias project1=‘cd cs390/project1; ls’

 Avoid using alias name the same as the system command
unless it is intended, such as rm  rm -i

 Deleting aliases: unalias name_of_alias

Slide #21 3/9/2020

Shell I/O Redirection
 Three file descriptors (0, 1, 2) reserved for the terminal

 0: stdin; 1: stdout; 2: stderr

 Redirection operators

Operator What It Does

< filename Redirect input (read input from a file instead of
screen/terminal/keyboard

> filename Redirect output to file instead of the terminal screen

>> filename Append output to file

2> filename Redirect stand error output to file

&> filename Redirect output and error (&>> for append)

1>&2 Redirect output to where error is going

2>&1 Redirect error where output is going

Slide #22 3/9/2020

I/O Redirection Examples
 Redirect stdout to a file

 ls –l > filelist.txt # save result to a file
 ls –l >> filelist.txt # append the result to the file
 echo “you are so good” > file
 cat file2 >> file # append content of file2 to file
 grep cs390 * > result

 Redirect stdout and stderr to one file
 grep cs390 * > result 2>&1
 grep cs390 * &> result

 Separate stdout and stderr to two different files
 phonelist John Smith > result 2> log.err

 Take input from a file
 cat <file.txt
 tr ‘[A-Z]’ ‘[a-z]’ < myfile
 patch file_original < patch_file (the difference)
 mail –s “sub” hlin@cs.uah.edu < file.txt

Slide #23 3/9/2020

Command Substitution
Assigning the output of a command to a variable
 Two formats

 Back quotes, the old method: `command`
• filelist=`ls -1`; echo $filelist ???
• today=`date “+%m/%d/%y %T” `
Double/single quotes are needed due to the white space b/w %y and %T

 A set of parentheses preceded with a dollar sign: $(command)
• filelist=$(ls -1)
• today=$(date “+%m/%d/%y %T”)

 Examples of different quoting schemes
 cal=$(cal), or cal=`cal`
 echo $cal
 echo `$cal`
 echo `cal`
 echo “$cal”

Slide #24 3/9/2020

Parameter Expansion

 $foo  ${foo}
 ${variable#pattern}

 Delete the shortest matching part from LEFT and return the rest
 ${foo#t*is}  is a test

 ${variable##pattern}
 Delete the longest matching part from LEFT and return the rest
 ${foo##t*is}  a test

 ${variable%pattern}
 Matches the smallest trailing portion to pattern and removes it
 ${foo%t*st}  this is a

 ${variable%%pattern}
 Matches the longest trailing portion to pattern and remove it
 ${foo%%t*st}  Empty output!

foo=‘this is a test’

Slide #25 3/9/2020

 ${var/pattern/string}
 Replace pattern with string: ${foo/is/IS} 

 ${var^}; ${var^pattern}
 Capitalize the first letter or the first occurrence of pattern

 ${var^^}; ${var^^pattern}
 Convert every letter in var or matched pattern to uppercase

 ${var,} or ${var,pattern}
 Convert the first letter or the first occurrence of pattern to

lowercase letter.
 ${var,,} or ${var,,pattern}

 Convert every letter in var or every letter matched
pattern to lowercase

NOTE: The pattern is a “single character”, or one of the
set, such as [b-d]

foo=‘this is a test’

String Substitution

Slide #26 3/9/2020

Parameter Testing (set or unset)
 ${foo:-bar}

 If foo exists and is not null, return $foo, otherwise return
bar

 no modification to variable foo

 ${foo:=bar}
 If variable foo exists and is not null, return $foo,
 otherwise set foo to bar and return its value (bar)

 ${foo:+bar}
 If foo exists and is not null, return bar,
 otherwise substitute nothing (return null)

 ${foo:?message}
 If variable foo exists and is not null, return its value ($foo)
 otherwise print the message

Slide #27 3/9/2020

hlin@dakota:~> fruit=${fruit:-apple}
hlin@dakota:~> echo $fruit
apple
hlin@dakota:~> echo ${fruit:-pear}
apple

hlin@dakota:~> echo ${fruit:-apple}
apple
hlin@dakota:~> echo ${fruit:-pear}
pear
hlin@dakota:~> echo ${fruit:=apple}
apple
hlin@dakota:~> echo ${fruit:-pear}
apple

Slide #28 3/9/2020

Substring
${string:offset}

 Position starts with zero
 Returns the substring starting from offset

${string:offset:len}
returns the substring starting from offset for len long
 Position starts with zero
 For negative offset, the position is taken from the end

of the string
• Need to leave a white space b/w “:” and “-” sign
echo ${day: -3:2}  DA if day=“MONDAY”

