
Slide #1 3/9/2020

UNIX Shells
 Bourne Shell -- sh

 Written by At &T
 A shell commonly used by the administrator when running as root
 Simpler and faster than C shell scripts
 Default shell prompt: $

 C shell -- csh
 Developed by Berkley with added extra features

• history, aliasing, etc
 Default shell prompt: %

 Korn shell -- ksh
 Developed by David Korn at AT&T
 Added more features from C shell
 Default shell prompt: $

Slide #2 3/9/2020

Linux Shells

GNU Bourne Again Shell – bash
 The Linux default shell
 An enhanced Bourne shell
 The most popular shells used by UNIX and Linux users
 Default prompt: $

TC shell -- tcsh
 An enhanced but completely compatible version of

the Berkeley UNIX C shell, csh(1).
 Default prompt: >

**Note: C shell and tc shell are not installed on CS Lab systems

Slide #3 3/9/2020

Which Shell Are You Using?
shell environmental variable: SHELL

 echo $SHELL
 printenv SHELL

Note:
Without arguments, printenv will display all the environment variables
In CS lab, the default shell is bash, unless you change it to a different shell

chsh command
 Run chsh, it will prompt you for password, then the

login shell you prefer
/etc/shells

• Lists all the available shells on the system
• chsh must use one of the shells listed in file
/etc/shells

Slide #4 3/9/2020

Some Useful Files Under $HOME

 .bash_profile/.profile
 Set env, such as umask, PATH, etc

 .bashrc: set command alias, functions, etc

 bash executes these files in order when login (interactive)
/etc/profile ~/.bash_profile ~/.bash_login
~/.profile

It stops when a file is found and executed

 bash executes ~/.bash_logout if exists

When bash started (not through login)
/etc/bash.bashrc ~/.bashrc

.bash_login .bash_logout .bash_profile .bashrc (possible .profile)

Slide #5 3/9/2020

Interactive Shell Usage

 Type command at the prompt ($, %,or >) with
arguments and/or options, this command line is ended
with a new line

 The shell reads a line of input (the command line) and
parses it : breaking the line into words, called tokens,
separated by space or tab

 The first word is either a built-in command, or an
executable program located somewhere on the disk

Slide #6 3/9/2020

Command Line Processing

For shell-built-in command, the shell will
execute it internally

For executable program, the shell will
search the directories listed in the PATH
environmental variable
 The shell will fork a new process (a child

process) and then execute the program with
exec

 The shell will report the status of the exiting
program when it finishes

 A prompt will return (appear)

Slide #7 3/9/2020

Program Exit Status: ?
When a command/program terminates, it returns

an exit status to the parent process (or parent
shell)

The value of exit status
 The exit status is a number in [0-255]
 0 – the command was successful in its execution
 Non-zero – the command fails in some way

127 – command is not found by the shell

The special shell variable ? is set to the value of
the exit status of the last executed command
 To check the exit status of the immediate previous

executed cmd
echo $?

Slide #8 3/9/2020

Multi-commands in a Command Line
Multiple commands at one line separated by “;”

 ls; pwd; date > output
 (ls; pwd; date) > output

What’s the difference of the output from the above two
command lines?

Conditional execution of commands
 cmd1 && cmd2

• cmd2 executes only cmd1 is successful ($?==0)
find . –name hw5.sh && ./hw5.sh

 cmd1 || cmd2
• cmd2 executes if cmd1 fails

grep cs390 2>log.err || mail -s “failed” linh@uah.edu <log.err

Slide #9 3/9/2020

Shell and subshell
A subshell is a new shell that is executed

under the current shell
 Subshell is a child process of the shell where it is

created
 Sub shell has no knowledge of the local variables

defined in its parent shell
 Subshell cannot change variables defined in its

parent shell
 Only environmental variables of current (parent)

shell are available to the subshells

To terminate/exit the subshell using “exit”
command

Slide #10 3/9/2020

Running script/commands
Normally, a shell script is run by: bash script.sh

 it will fork a child process (a subshell) to execute
the program

 The variables in the sub shell will not be available to its
parent shell, the local variables defined in the parent’s
shell are also not available to the subshell

There are two special programs: dot (.) /source
 “source” command will run the commands of the script

within the current shell
 The source or . (dot) command normally is used to

execute the above initialization files
a) source .bashrc
b) . .bashrc

Slide #11 3/9/2020

Shell Variables
 Variable name must start with a letter or _

Two types of variables

 Environmental (global) variables
 Variables are available to the current shell and its subshells

 Using command printenv to get the current shell settings
 Ex: PATH,HOME,SHELL,LOGNAME,PWD,PS1,PS2,
HOSTNAME,USER, etc.

 Set/define environment variables
• Method 1: VARNAME=“value”; export VARNAME
• Method 2: export VARNAME=“value”

 More env variables are listed by running “env” or Table 8.1

 Local variables
 Defined by the user, available only to the current shell , not to its

parent nor to its sub shells

Slide #12 3/9/2020

The PATH variable
 A colon-separated list of directories

 Used by the shell when searching for the command

 System-wide PATH can be defined in either
/etc/profile or /etc/bashrc or
/etc/bash.bashrc

 User-defined path is either in .profile, .bash_profile,
.bashrc or/and .bash_profile under your $HOME directory
 To add new directory to the existing path
PATH=$PATH:~/cs390:~/local/bin:/opt/usr/bin

 Check the path value
 printenv PATH (NO $ here)

 echo $PATH

Slide #13 3/9/2020

The Prompt (PS1 & PS2)
 Prompt string settings

 \h|\H: hostname
 \u: username of the current user
 \w: the current working directory
 \W: the basename of the current working directory
 \!: the history number of this prompt

 PS1: primary bash prompt, “$” by default for bash, can
be reset using:
 PS1=“[\u@\h \W]\% ”
 PS1=“[\u@\h]\> ”

 Really confusing if PS1=“” -

 PS2: secondary bash prompt, “>” by default
 It’s for uncompleted command, or more input is expected
 Ex: echo “ this is cs390

Slide #14 3/9/2020

Reference Value of Variables

 Prefix a “$” sign to variable name, $varname when
referencing a variable for its value

 The echo command and its options
 -n: suppress newline at the end of a line output
 -e: allows interpretation of the escape sequences, \t,
echo “you are so \t nice ” you are so \t nice
echo –e “you are so \t nice ” you are so
nice

 echo ${varname} echo $varname
• Use curly bracket for string concatenation
• name=${variable}ABC

 printf
 printf “The number is %.2f \n” 100

Slide #15 3/9/2020

Quoting

Used to protect special meta-characters from
interpretation and to prevent parameter
expansion
 Special metacharacters that require to be quoted

• ; & < > | () { } $ \

Three types of quoting
 Matched double quotes: “”
 Matched single quotes:‘ ’
 Back slash: \

Slide #16 3/9/2020

 Single quotes
 Enclosing characters in single quotes preserves the literal

meaning of all the characters
 echo ‘$PATH’ $PATH

 Double quotes
 Enclosing characters within double quotes preserves the literal

meaning of all characters except dollar sign ($), backquote (`),
and backslash (\).

echo “here are 5 space: . ” (five space)
echo here are 5 space: . (only one space displayed!)

 Backslash \
 Preserves the literal meaning of the following character, with

the exception of 〈newline〉.
 A backslash preceding a 〈newline〉 is treated as a line

continuation.
To get the $ printed echo It costs me\$500
To get the \ printed echo \\n \n

Slide #17 3/9/2020

Shell Special Variables
 Consisting of a single character
 Preceding $ to access the value stored in the variable

Variable Meaning

$
The PID of the current shell/process
echo $$

?

The exit value (exit status or return) of the last
executed command, a successful process returns 0,
none zero otherwise
echo $?

!
The PID of the last job put in the background
echo $!

Slide #18 3/9/2020

Shell HISTORY

 Bash will keep track of command history saved in file
.bash_history under your home directory

 The length of the history commands is defined by
environment variable HISTSIZE
 echo $HISTSIZE 1000

 The size can be reset
 export HISTSIZE=100

 The history file will be updated at the time of logout
 History command history [n]

 List the last n commands in the shell

Slide #19 3/9/2020

Utilization of Shell History
Short cut to run the previous command

 !!
The previous command

 !123
• Execute the command of command # 123

• The number can be obtained from running “history” command

 !name
• The first command which matches name

 ctrl-r string
• Reverse-search for string starting from the end of the history

file, press tab key when found the matched one

Slide #20 3/9/2020

alias
 Making/giving another name for a command
 Creating alias with shell built-in command alias

 Use single or double quotes if there is space in the value
 The following can be put in file .bashrc
alias rm=‘rm –i’
alias ll=‘ls –l’
alias mv=‘mv –i’
alias sshzeta=‘ssh linh@zeta.itsc.uah.edu’
alias cd390=‘cd cs390_Sp16’

 Multi-commands can be combined into one line separated by “;”
alias project1=‘cd cs390/project1; ls’

 Avoid using alias name the same as the system command
unless it is intended, such as rm rm -i

 Deleting aliases: unalias name_of_alias

Slide #21 3/9/2020

Shell I/O Redirection
 Three file descriptors (0, 1, 2) reserved for the terminal

 0: stdin; 1: stdout; 2: stderr

 Redirection operators

Operator What It Does

< filename Redirect input (read input from a file instead of
screen/terminal/keyboard

> filename Redirect output to file instead of the terminal screen

>> filename Append output to file

2> filename Redirect stand error output to file

&> filename Redirect output and error (&>> for append)

1>&2 Redirect output to where error is going

2>&1 Redirect error where output is going

Slide #22 3/9/2020

I/O Redirection Examples
 Redirect stdout to a file

 ls –l > filelist.txt # save result to a file
 ls –l >> filelist.txt # append the result to the file
 echo “you are so good” > file
 cat file2 >> file # append content of file2 to file
 grep cs390 * > result

 Redirect stdout and stderr to one file
 grep cs390 * > result 2>&1
 grep cs390 * &> result

 Separate stdout and stderr to two different files
 phonelist John Smith > result 2> log.err

 Take input from a file
 cat <file.txt
 tr ‘[A-Z]’ ‘[a-z]’ < myfile
 patch file_original < patch_file (the difference)
 mail –s “sub” hlin@cs.uah.edu < file.txt

Slide #23 3/9/2020

Command Substitution
Assigning the output of a command to a variable
 Two formats

 Back quotes, the old method: `command`
• filelist=`ls -1`; echo $filelist ???
• today=`date “+%m/%d/%y %T” `
Double/single quotes are needed due to the white space b/w %y and %T

 A set of parentheses preceded with a dollar sign: $(command)
• filelist=$(ls -1)
• today=$(date “+%m/%d/%y %T”)

 Examples of different quoting schemes
 cal=$(cal), or cal=`cal`
 echo $cal
 echo `$cal`
 echo `cal`
 echo “$cal”

Slide #24 3/9/2020

Parameter Expansion

 $foo ${foo}
 ${variable#pattern}

 Delete the shortest matching part from LEFT and return the rest
 ${foo#t*is} is a test

 ${variable##pattern}
 Delete the longest matching part from LEFT and return the rest
 ${foo##t*is} a test

 ${variable%pattern}
 Matches the smallest trailing portion to pattern and removes it
 ${foo%t*st} this is a

 ${variable%%pattern}
 Matches the longest trailing portion to pattern and remove it
 ${foo%%t*st} Empty output!

foo=‘this is a test’

Slide #25 3/9/2020

 ${var/pattern/string}
 Replace pattern with string: ${foo/is/IS}

 ${var^}; ${var^pattern}
 Capitalize the first letter or the first occurrence of pattern

 ${var^^}; ${var^^pattern}
 Convert every letter in var or matched pattern to uppercase

 ${var,} or ${var,pattern}
 Convert the first letter or the first occurrence of pattern to

lowercase letter.
 ${var,,} or ${var,,pattern}

 Convert every letter in var or every letter matched
pattern to lowercase

NOTE: The pattern is a “single character”, or one of the
set, such as [b-d]

foo=‘this is a test’

String Substitution

Slide #26 3/9/2020

Parameter Testing (set or unset)
 ${foo:-bar}

 If foo exists and is not null, return $foo, otherwise return
bar

 no modification to variable foo

 ${foo:=bar}
 If variable foo exists and is not null, return $foo,
 otherwise set foo to bar and return its value (bar)

 ${foo:+bar}
 If foo exists and is not null, return bar,
 otherwise substitute nothing (return null)

 ${foo:?message}
 If variable foo exists and is not null, return its value ($foo)
 otherwise print the message

Slide #27 3/9/2020

hlin@dakota:~> fruit=${fruit:-apple}
hlin@dakota:~> echo $fruit
apple
hlin@dakota:~> echo ${fruit:-pear}
apple

hlin@dakota:~> echo ${fruit:-apple}
apple
hlin@dakota:~> echo ${fruit:-pear}
pear
hlin@dakota:~> echo ${fruit:=apple}
apple
hlin@dakota:~> echo ${fruit:-pear}
apple

Slide #28 3/9/2020

Substring
${string:offset}

 Position starts with zero
 Returns the substring starting from offset

${string:offset:len}
returns the substring starting from offset for len long
 Position starts with zero
 For negative offset, the position is taken from the end

of the string
• Need to leave a white space b/w “:” and “-” sign
echo ${day: -3:2} DA if day=“MONDAY”

