
2/25/2020slide #1

awk Programming

 awk script is a file with comments and awk
statements, the comments are preceded by a #
sign

My awk assignment

/Jones/{print NR, $0}

/Tom/{print “Tom’s birthday is ” $4}

#End of Script

 to run awk with awk script

awk –f my_awk.txt employee.txt

cat employee.txt |awk –f my_awk.txt

 Each line of the input file is read into awk’s buffer $0

 All the cmds in the script file are processed on this record

 Then, the record is discarded, and the next line is read into $0.

2/25/2020slide #2

AWK Variables
 Built-in Variables, more listed in Table 12.5 on p346

 User-defined variables

 String, number or both

 Declared on use, no need to declare it before using it

 The type of the variable is determined by the value assigned

 No prefix of “$” for variables except the pre-defined fields

Name Significance

NR Number of Record of the being processed line(record)

NF Number of Field of the being processed line (record)

$0 Entire record (the whole input line/record)

$1 - $n Fields in the current record

FS Record field separator, white space/tab by default

OFS Output field separator

ORS Output record separator (new line by default)

FILENAME Name of the current input file

2/25/2020slide #3

This is a comment line

awk script file name is “script.awk”

BEGIN{

print “ This is the BEGIN block”

count=0; FS=“:”

}

/^north/{count++; print $1, $2, $3}

/^south/{count++; print “The”, $1, “ district.”}

END{

print “This is the END block”

print “Number of records found:”, count

}

Execution using the awk script

awk –f script.awk datafile

2/25/2020slide #4

Programming with AWK

 if/else if/else

awk ‘{if($6>50) print $1 “ too high”; else \

print “Range is OK”}’ file.txt

 Control statements

 exit

• Terminate the awk program

 next

• Read and process the next line

{ if (expression1){
statement1; statement2;…

}
else if (expression2) {

statement1
statement2

}
else{

statement
}

}

Conditional Statement (p350)

Program Control

Statements

{if (NR == 7) { exit(0)}}

{

if (NR == 5) { next}

else {print $0}

}

2/25/2020slide #5

Loop (351)

{ for (x=1; x<=NF; x++)

{

if ($x <0)

print “Bottomed out!”; break

}

for (x=1; x<=NF; x++)

{

if ($x==0)

print “Get next item”; continue

}

}

{i = 1; while(i<=NF) { sum +=$i; print NF,$i; i++ }}

awk ‘{i=1; while (i<=NF) {print NF, $i; i++}}’ file

awk ‘{for (i=1; i<= NF; i++) {print NF, $i}}’ file

2/25/2020slide #6

 sub and gsub

{sub(/PC/, “Personal Computer”); print}

 sub: Substitute “PC” with “Personal Computer” on the first
occurrence of PC on that line

 If gsub is used, then global substitution, replacing every
occurrence of the pattern

 substr: substr(string, start_pos, length)

echo today is |awk '{print substr($0, 2,2)}‘ od

 split: split(string, array, field separator)

 The array subscript starts at 1
awk ‘{split($4,date,“/”);if(date[3]>=60) print $0}’ employee.txt

awk Built-in Functions (p348)

Tom Jones 4421 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 65000

Billy Black 1683 9/23/44 336500
Other approach?

2/25/2020slide #7

More awk built-in Functions

 index function

 Returns the first position where a substring is found in a string

 Offset starts at position 1

{print index(“hollow”, “low”)} 4

awk ‘{print index($2,”Jones”)}’ employee.txt

 length function

 Returns the number of characters in a string

length(“hello”) return 5

{if(length($1) == 3) print $0}

 awk Built-In Arithmetic Functions

 int(x), log(x), exp(x), rand(), sqrt(x), srand(x)

 atan2(x,y), cos(x), sin(x);

2/25/2020slide #8

Associative Array

 Regular array (numerical indexed array)

 Indexed by number (integer)

 name[1], name[2]

 Associate array (hash array, like mapping in c++)

 Arbitrary index, called key

usage[“Smith”], usage[“Jones”],usage[“Lin”].

 You need to use double quotes for the “key”,

otherwise, awk will treat the key as variable

which may or may not have a value

 No need to declare arrays or index types

 A special for loop usage for associate array

for (key in my_array)

print key, my_array[key];

2/25/2020slide #9

Susan 400

John 100

Mary 200

John 100

Mary 300

Susan 100

Q:

How to get the totals of each person from the data set?

2/25/2020slide #10

Approach

file “ex.awk”

BEGIN{}

/^[A-Z]/{salary[$1] += $2} # avoid
empty/blank line

END{

for (name in salary)

print name, salary[name]

}

Susan 400

John 100

Mary 200

John 100

Mary 300

Susan 100

Susan:400

John:100

Mary:200

John:100

Mary:300

Susan:100

awk –f ex.awk data.txt

awk –F: –f ex.awk data.txt

Output:

Mary 500

John 200

Susan 500

2/25/2020slide #11

awk script file “employee.awk”

BEGIN{ print “Compute Average Salary”

sum = 0

}

{salary[$1] = $5; sum += $5}

END {

print “Average salary is:”, sum/NR

for (name in salary)

{

print name, salary[name]

sum2 += salary[name]

}

print “Average salary is:”, sum2/NR

}

Average salary is: 45437.5

Tom 54335

Sally 65000

Mary 28765

Billy 33650

Average salary is: 45437.5

