
2/25/2020slide #1

awk Programming

 awk script is a file with comments and awk
statements, the comments are preceded by a #
sign

My awk assignment

/Jones/{print NR, $0}

/Tom/{print “Tom’s birthday is ” $4}

#End of Script

 to run awk with awk script

awk –f my_awk.txt employee.txt

cat employee.txt |awk –f my_awk.txt

 Each line of the input file is read into awk’s buffer $0

 All the cmds in the script file are processed on this record

 Then, the record is discarded, and the next line is read into $0.

2/25/2020slide #2

AWK Variables
 Built-in Variables, more listed in Table 12.5 on p346

 User-defined variables

 String, number or both

 Declared on use, no need to declare it before using it

 The type of the variable is determined by the value assigned

 No prefix of “$” for variables except the pre-defined fields

Name Significance

NR Number of Record of the being processed line(record)

NF Number of Field of the being processed line (record)

$0 Entire record (the whole input line/record)

$1 - $n Fields in the current record

FS Record field separator, white space/tab by default

OFS Output field separator

ORS Output record separator (new line by default)

FILENAME Name of the current input file

2/25/2020slide #3

This is a comment line

awk script file name is “script.awk”

BEGIN{

print “ This is the BEGIN block”

count=0; FS=“:”

}

/^north/{count++; print $1, $2, $3}

/^south/{count++; print “The”, $1, “ district.”}

END{

print “This is the END block”

print “Number of records found:”, count

}

Execution using the awk script

awk –f script.awk datafile

2/25/2020slide #4

Programming with AWK

 if/else if/else

awk ‘{if($6>50) print $1 “ too high”; else \

print “Range is OK”}’ file.txt

 Control statements

 exit

• Terminate the awk program

 next

• Read and process the next line

{ if (expression1){
statement1; statement2;…

}
else if (expression2) {

statement1
statement2

}
else{

statement
}

}

Conditional Statement (p350)

Program Control

Statements

{if (NR == 7) { exit(0)}}

{

if (NR == 5) { next}

else {print $0}

}

2/25/2020slide #5

Loop (351)

{ for (x=1; x<=NF; x++)

{

if ($x <0)

print “Bottomed out!”; break

}

for (x=1; x<=NF; x++)

{

if ($x==0)

print “Get next item”; continue

}

}

{i = 1; while(i<=NF) { sum +=$i; print NF,$i; i++ }}

awk ‘{i=1; while (i<=NF) {print NF, $i; i++}}’ file

awk ‘{for (i=1; i<= NF; i++) {print NF, $i}}’ file

2/25/2020slide #6

 sub and gsub

{sub(/PC/, “Personal Computer”); print}

 sub: Substitute “PC” with “Personal Computer” on the first
occurrence of PC on that line

 If gsub is used, then global substitution, replacing every
occurrence of the pattern

 substr: substr(string, start_pos, length)

echo today is |awk '{print substr($0, 2,2)}‘  od

 split: split(string, array, field separator)

 The array subscript starts at 1
awk ‘{split($4,date,“/”);if(date[3]>=60) print $0}’ employee.txt

awk Built-in Functions (p348)

Tom Jones 4421 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 65000

Billy Black 1683 9/23/44 336500
Other approach?

2/25/2020slide #7

More awk built-in Functions

 index function

 Returns the first position where a substring is found in a string

 Offset starts at position 1

{print index(“hollow”, “low”)}  4

awk ‘{print index($2,”Jones”)}’ employee.txt

 length function

 Returns the number of characters in a string

length(“hello”)  return 5

{if(length($1) == 3) print $0}

 awk Built-In Arithmetic Functions

 int(x), log(x), exp(x), rand(), sqrt(x), srand(x)

 atan2(x,y), cos(x), sin(x);

2/25/2020slide #8

Associative Array

 Regular array (numerical indexed array)

 Indexed by number (integer)

 name[1], name[2]

 Associate array (hash array, like mapping in c++)

 Arbitrary index, called key

usage[“Smith”], usage[“Jones”],usage[“Lin”].

 You need to use double quotes for the “key”,

otherwise, awk will treat the key as variable

which may or may not have a value

 No need to declare arrays or index types

 A special for loop usage for associate array

for (key in my_array)

print key, my_array[key];

2/25/2020slide #9

Susan 400

John 100

Mary 200

John 100

Mary 300

Susan 100

Q:

How to get the totals of each person from the data set?

2/25/2020slide #10

Approach

file “ex.awk”

BEGIN{}

/^[A-Z]/{salary[$1] += $2} # avoid
empty/blank line

END{

for (name in salary)

print name, salary[name]

}

Susan 400

John 100

Mary 200

John 100

Mary 300

Susan 100

Susan:400

John:100

Mary:200

John:100

Mary:300

Susan:100

awk –f ex.awk data.txt

awk –F: –f ex.awk data.txt

Output:

Mary 500

John 200

Susan 500

2/25/2020slide #11

awk script file “employee.awk”

BEGIN{ print “Compute Average Salary”

sum = 0

}

{salary[$1] = $5; sum += $5}

END {

print “Average salary is:”, sum/NR

for (name in salary)

{

print name, salary[name]

sum2 += salary[name]

}

print “Average salary is:”, sum2/NR

}

Average salary is: 45437.5

Tom 54335

Sally 65000

Mary 28765

Billy 33650

Average salary is: 45437.5

