
2/11/2020Slide #1

AWK (I)

 AWK is a UNIX programming language used for

manipulating data and generating reports

 AWK stands for the initials of the three authors

 Alfred Aho, Peter Weinberger, and Brian Kernighan

 AWK scans input (file/stdin) line by line (as SED does)

 searching for lines matching a specified pattern

 performing specified actions by instructions enclosed by { … }

 Programming

 Built-in functions, math functions, etc.

 If statement

 For/while, etc.

2/11/2020Slide #2

awk Basic Usage

 AWK command format (use single quotes, double
quotes will be used inside the awk command)

 awk ‘/pattern/{action}’ InputFile

• The action will be performed on lines which match the pattern

 awk ‘/pattern/’ InputFile

• Print (default action) lines that matches the pattern

 awk ‘{action}’ InputFile

• The action will be performed on all lines

 awk commands in script (file)

 awk –f script.awk InputFile

 Input can be from file or STDIN, or pipe (output stream
of previous command)

 who |awk ‘{print $1}’

• print out 1st field (user name) of the output from who

2/11/2020Slide #3

Pattern & Actions
 Pattern

 Including regex, enclosed with forward slashes /…/

awk ‘/Tom/’ employee.txt

awk ‘/Mary/{print $1, $3}’ employee.txt

 Be aware of the unsupported metacharacters, such as

awk ‘/[0-9]\{2\}/’ file.txt (not work)

sed –n ‘/[0-9]\{2\}/p’ file.txt (ok)

echo 123456 | awk ‘[1-9]{5}’ (gawk, CS LAB)

 Actions

 Action statements are enclosed with curly brackets

 Can have multiple actions (statements) within the curly brackets

• Actions are separated by semicolons on one line

‘/Pattern/{ action statement one; action statement2}’

• One action per line in script
/Pattern/{ 1st action statement

2nd action statement

}

– No need to put semicolon at the end

2/11/2020Slide #4

How awk Works?

 Takes a line from input, assigned it to an internal

variable $0

 Breaks the line into fields/columns by white space or tab

(default), and saves them in internal variables:$1, $2, up to

the total number of fields $NF

 Performs the actions on the line/fields if there are any. If

no action is specified, default action is performed (line is

printed to the screen)

 Takes next line from input file and puts to $0 and

performs the actions on it, …until all the lines have

been processed

2/11/2020Slide #5

Record & Fields

 Record: NR

 Each line terminated with a newline is a record (be aware
the difference of newline character on different platforms)

 $0: is an internal variable, hold the entire record (whole
line)

 NR: number of records (number of lines) up-to-now

• After a record (line) is processed, NR is incremented by one

 Fields: NF

 Each record consists of fields separated by field separator,
by default, it is either a whitespace or tab

 NF: number of fields of each record, it can vary from line to
line

awk ‘{print NR, NF, $0}’ employee.txt

2/11/2020Slide #6

Input Field Separators

 For line in data.txt:
Amy Lin|824-5164|UAH ITSC|AL 35899

awk ‘{print $1, $2, NF}’ info.txt ???

• Whitespace is the default separator

• tab is treated as whitespace

awk –F “|” ‘{print NF,”:”,$1, $2}’ data.txt

 4:Amy Lin 824-5164

• Now “|” is the input field separator

 Multiple field separators

awk –F “[|]” ‘{print NF”:”$1, $2, NF}’ data.txt

 7:Amy Lin

• Both “|” and “ ” are the input field separators

2/11/2020Slide #7

AWK Built-in Variables

 FS: Field Separator

 White space: by default, can define your own with –F option

 NF: number of fields (each line) separated by FS

 $n: the nth field/column of a record (also called

Positional Parameters)

 OFS: Output Field Separator

 When print, {print $1, $2}, fields are separated by “,”,which

matches to a white space by default,

OFS a white space

 You must use double quotes for “,” if you want to print “,”

 NR: internal variable: Number of Records

awk ‘{print NR, $1, $2 }’ employee.txt

 More on P346 Table 12.5

2/11/2020Slide #8

Formatting Output

awk ‘/sally/{print NR, “\t\tHave a nice day,” $1,\

$2 “!”}’ input.txt

 Here “t” is for tab space, a special character quoted by

backslash

 Strings must be enclosed in double quotes to preserve

the space in the print statement

 Commas (must) be used to separate the arguments

 Comma is converted to whitespace (the default OFS)

 If you want to print comma, it has to be enclosed in double

quotes, or define OFS=“,”

 A new line “\n” is added by default for every print

 If you don’t want to start a new line, use printf instead of

print for “fancy” output

2/11/2020Slide #9

Formatting Output

The printf function

 c-like function, formatting output

‘{printf “The name is %-15s, ID is %8d\n”, $1,$3}’

• %-15s left justified 15-space string

• %8d right justified 8-space integer

See more on p334 of the textbook

2/11/2020Slide #10

awk Examples

Tom Jones 4421 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 65000

Billy Black 1683 9/23/44 336500

Retrieve specified record or fields of the record

 awk '/Mary/' employee.txt

• Prints lines containing “Mary”

 awk '{print $1; print $4}' employee.txt

• Prints the first and the fourth fields in two separated lines

 awk '/^Sally/{print $1,$2}' employee.txt

• Prints 1st and 2nd fields separated by a white space for lines
starting with Sally

• How to separate them ($1 & $2) with a tab?

• How to accomplish this using other UNIX program?

employee.txt

2/11/2020Slide #11

Comparison & Logical Operators for

line selection (p338, table 12.3)

 Number comparison: <, <=, ==, !=, >=, >

 String matching (regex): ~ , !~

“~” and !~ are used to match an expression within a field
awk ‘$2 ~ /Jones/’ employee.txt

awk ‘$4 ~ /[6][0-9]$/{print $0}' employee.txt

awk ‘$4 ~ /\/[1-9][0-9]?\/[6][0-9]?/{print $2 “,”, $1}’

employee.txt

awk ‘$2 !~ /Jones/{print $0}’employee.txt

 Spaces around ~ or !~ are optional

 Examples

awk ‘$3 >= 124 {print NR, $0}’ employee.txt

awk ‘$3 == 5346’ employee.txt

awk ‘$1 !~ /Adam/{print NR, “:” $0}’ employee.txt

awk ‘{max=($1 >$2)? $1: $2; print max}’ input.txt

2/11/2020Slide #12

Mathematic operations in awk

 Arithmetic Operations (Table 12.2, p336)

 +, -, *, /, %, ^

awk ‘$3*$4 > 500’ input.txt

awk ‘{print NR, $3+10.99}’ input.txt

awk ‘/southern/{print NR, $8/2}’ input.txt

awk ‘/southern/{print NR, $8%2}’ input.txt

 awk does floating point operation

 Logical Operations (table 6.10, p191): &&, || , !

awk ‘$2 > 5 && $2< 15’ inputFile

awk ‘$3 == 100 || $4 > 50’ inputFile

awk ‘$3 == “Christ”{$3=“Christian”; print}’ datafile

awk ‘$3 ~ /Christ/{$3=“Christian”; print}’ datafile

(vs. sed -n ‘s/Christ/Christian/p’ datafile)

2/11/2020Slide #13

More awk Examples

 awk ‘/^[a-j]/ {print $1}’ employee.txt

 awk ‘/[^A-Z]/ {print $0}’ file.txt

 ls –l |awk ‘/hlin/ {print $4}’

 ls –l | awk ‘$2 ~ /hlin/ {print $4}’

 awk ‘/northeast/{print $3, $2}’ datafile

 awk ‘/^[ns]/{print $1}’ datafile

 awk ‘/^[A-Za-z]+/’ datafile

awk ‘/^[A-Za-z][A-Za-z]*/’ datafile

 awk ‘$5 ~ /\.[7-9]+/’ datafile

 awk ‘$2 !~ /E/{print $1, $2}’ datafile

2/11/2020Slide #14

BEGIN & END Blocks

 The BEGIN block
 BEGIN Followed by an action block

 The BEGIN block is executed before awk processes lines from the
input file

 awk does not start to read the input file until this action block
has completed

 Can be used to initialize variables, change the values of some
default variables, such as FS, OFS, etc

awk ‘BEGIN{FS=“:”; OFS=“\t”; ORS=“\n\n”}{print $1 $2, $3}’ file

 The END block
 Followed by actions handled after all input lines have been

processed

 Can be used to do some statistics analysis on the input datafile:

• sum, average, etc.
awk ‘END {print “The total number of records is ” NR}’

input_file

awk ‘/Mary/{count++}END{print “Mary was found”, count,

\“times.”}’ input_file

