
2/11/2020Slide #1

AWK (I)

 AWK is a UNIX programming language used for 

manipulating data and generating reports 

 AWK stands for the initials of the three authors

 Alfred Aho, Peter Weinberger, and Brian Kernighan

 AWK scans input (file/stdin) line by line (as SED does)

 searching for lines matching a specified pattern

 performing specified actions by instructions enclosed by { … }

 Programming

 Built-in functions, math functions, etc.

 If statement

 For/while, etc.



2/11/2020Slide #2

awk Basic Usage

 AWK command format (use single quotes, double 
quotes will be used inside the awk command)

 awk ‘/pattern/{action}’ InputFile

• The action will be performed on lines which match the pattern

 awk ‘/pattern/’ InputFile

• Print (default action) lines that matches the pattern

 awk ‘{action}’ InputFile

• The action will be performed on all lines

 awk commands in script (file)

 awk –f script.awk InputFile

 Input can be from file or STDIN, or pipe (output stream 
of previous command)

 who |awk ‘{print $1}’

• print out 1st field (user name) of the output from who



2/11/2020Slide #3

Pattern & Actions
 Pattern

 Including regex, enclosed with forward slashes /…/

awk ‘/Tom/’ employee.txt

awk ‘/Mary/{print $1, $3}’ employee.txt

 Be aware of the unsupported metacharacters, such as

awk ‘/[0-9]\{2\}/’ file.txt (not work)

sed –n ‘/[0-9]\{2\}/p’ file.txt (ok)

echo 123456 | awk ‘[1-9]{5}’ (gawk, CS LAB)

 Actions

 Action statements are enclosed with curly brackets

 Can have multiple actions (statements) within the curly brackets

• Actions are separated by semicolons on one line 

‘/Pattern/{ action statement one; action statement2}’

• One action per line in script
/Pattern/{ 1st action statement  

2nd action statement

}

– No need to put semicolon at the end 



2/11/2020Slide #4

How awk Works?

 Takes a line from input, assigned it to an internal 

variable $0

 Breaks the line into fields/columns by white space or tab 

(default), and saves them in internal variables:$1, $2, up to 

the total number of fields $NF

 Performs the actions on the line/fields if there are any.  If 

no action is specified, default action is performed  (line is 

printed to the screen)

 Takes next line from input file and puts to $0 and 

performs the actions on it, …until all the lines have 

been processed



2/11/2020Slide #5

Record & Fields

 Record: NR

 Each line terminated with a newline is a record (be aware 
the difference of newline character on different platforms)

 $0: is an internal variable, hold the entire record (whole 
line)

 NR: number of records (number of lines) up-to-now

• After a record (line) is processed, NR is incremented by one

 Fields: NF

 Each record consists of fields separated by field separator, 
by default, it is either a whitespace or tab

 NF: number of fields of each record,  it can vary from line to 
line

awk ‘{print NR, NF, $0}’ employee.txt



2/11/2020Slide #6

Input Field Separators

 For line in data.txt: 
Amy Lin|824-5164|UAH ITSC|AL 35899

awk ‘{print $1, $2, NF}’ info.txt  ???

• Whitespace is the default separator

• tab is treated as whitespace

awk –F “|” ‘{print NF,”:”,$1, $2}’ data.txt 

 4:Amy Lin 824-5164

• Now “|” is the input field separator

 Multiple field separators

awk –F “[ |]” ‘{print NF”:”$1, $2, NF}’ data.txt

 7:Amy Lin

• Both “|” and “ ” are the input field separators



2/11/2020Slide #7

AWK Built-in Variables

 FS: Field Separator

 White space: by default, can define your own with –F option

 NF: number of fields (each line) separated by FS

 $n: the nth field/column of a record (also called 

Positional Parameters)

 OFS: Output Field Separator

 When print, {print $1, $2}, fields are separated by “,”,which 

matches to a white space by default, 

OFS  a white space 

 You must use double quotes for “,” if you want to print “,”

 NR: internal variable: Number of Records

awk ‘{print NR, $1, $2 }’ employee.txt

 More on P346 Table 12.5



2/11/2020Slide #8

Formatting Output

awk ‘/sally/{print NR, “\t\tHave a nice day,” $1,\

$2 “!”}’ input.txt

 Here “t” is for tab space, a special character quoted by 

backslash

 Strings must be enclosed in double quotes to preserve 

the space in the print statement

 Commas (must) be used to separate the arguments

 Comma is converted to whitespace (the default OFS)

 If you want to print comma, it has to be enclosed in double 

quotes, or define OFS=“,”

 A new line “\n” is added by default for every print

 If you don’t want to start a new line, use printf instead of 

print for “fancy” output



2/11/2020Slide #9

Formatting Output

The printf function

 c-like function, formatting output

‘{printf “The name is %-15s, ID is %8d\n”, $1,$3}’

• %-15s  left justified 15-space string

• %8d  right justified 8-space integer

See more on p334 of the textbook



2/11/2020Slide #10

awk Examples

Tom Jones 4421 5/12/66 543354

Mary Adams 5346 11/4/63 28765

Sally Chang 1654 7/22/54 65000

Billy Black 1683 9/23/44 336500

Retrieve specified record or fields of the record

 awk '/Mary/' employee.txt

• Prints lines containing “Mary”

 awk '{print $1; print $4}' employee.txt

• Prints the first and the fourth fields in two separated lines

 awk '/^Sally/{print $1,$2}' employee.txt

• Prints 1st and 2nd fields separated by a white space for  lines 
starting with Sally

• How to separate them ($1 & $2) with a tab?

• How to accomplish this using other UNIX program?

employee.txt



2/11/2020Slide #11

Comparison & Logical Operators for 

line selection (p338, table 12.3)

 Number comparison:  <, <=, ==, !=, >=, >

 String matching (regex): ~ , !~

“~” and !~ are used to match an expression within a field
awk ‘$2 ~ /Jones/’ employee.txt

awk ‘$4 ~ /[6][0-9]$/{print $0}' employee.txt

awk ‘$4 ~ /\/[1-9][0-9]?\/[6][0-9]?/{print $2 “,”, $1}’ 

employee.txt

awk ‘$2 !~ /Jones/{print $0}’employee.txt

 Spaces around ~ or !~ are optional

 Examples

awk ‘$3 >= 124 {print NR, $0}’ employee.txt

awk ‘$3 == 5346’ employee.txt

awk ‘$1 !~ /Adam/{print NR, “:” $0}’ employee.txt

awk ‘{max=($1 >$2)? $1: $2; print max}’ input.txt



2/11/2020Slide #12

Mathematic operations in awk

 Arithmetic Operations (Table 12.2, p336)

 +, -, *, /, %, ^

awk ‘$3*$4 > 500’ input.txt

awk ‘{print NR, $3+10.99}’ input.txt

awk ‘/southern/{print NR, $8/2}’ input.txt

awk ‘/southern/{print NR, $8%2}’ input.txt

 awk does floating point operation

 Logical Operations (table 6.10, p191): &&, || , !

awk ‘$2 > 5 && $2< 15’ inputFile

awk ‘$3 == 100 || $4 > 50’ inputFile

awk ‘$3 == “Christ”{$3=“Christian”; print}’ datafile

awk ‘$3 ~ /Christ/{$3=“Christian”; print}’ datafile

(vs. sed -n ‘s/Christ/Christian/p’ datafile)



2/11/2020Slide #13

More awk Examples

 awk ‘/^[a-j]/ {print $1}’ employee.txt

 awk ‘/[^A-Z]/ {print $0}’ file.txt

 ls –l |awk ‘/hlin/ {print $4}’ 

 ls –l | awk ‘$2 ~ /hlin/ {print $4}’

 awk ‘/northeast/{print $3, $2}’ datafile

 awk ‘/^[ns]/{print $1}’ datafile

 awk ‘/^[A-Za-z]+/’ datafile 

awk ‘/^[A-Za-z][A-Za-z]*/’ datafile

 awk ‘$5 ~ /\.[7-9]+/’ datafile

 awk ‘$2 !~ /E/{print $1, $2}’ datafile



2/11/2020Slide #14

BEGIN & END Blocks

 The BEGIN block
 BEGIN Followed by an action block

 The BEGIN block is executed before awk processes lines from the 
input file

 awk does not start to read the input file until this action block 
has completed

 Can be used to initialize variables, change the values of some 
default variables, such as FS, OFS, etc

awk ‘BEGIN{FS=“:”; OFS=“\t”; ORS=“\n\n”}{print $1 $2, $3}’ file

 The END block
 Followed by actions handled after all input lines have been 

processed

 Can be used to do some statistics analysis on the input datafile:

• sum, average, etc.
awk ‘END {print “The total number of records is ” NR}’ 

input_file

awk ‘/Mary/{count++}END{print “Mary was found”, count, 

\“times.”}’ input_file


