CS 670 - HW 1

March 12, 2008

CS 670 - HW 1 2

1 Exercise 1.3

1.1 Implementation of a Chi-Square Test Statistic for IP
Packets

The chi-square statistic can be used to find if the overall set of observed
character frequencies in a received IP Packet are unusually different (as com-
pared to normal random variation) from the expected character frequencies.
This is a more sophisticated test, statistically speaking, than the simple
threshold detector used in the warm-up example. Assume that the thresh-
olds represent the expected frequencies. The statistic is computed by

2 _ S (fe[i]_fo[i])Q 1
X ; Jeli @

where n is the number of character types, fe is the expected frequency of the
indexed character type, fy is the observed frequency of the indexed character
type, and x2 is the test statistic.

Design a hardware chip that will alarm if the observed characters in an
IP packet results in a Chi-Square test statistic that is above a specified
threshold T. Design the chip in a way to efficiently implement the statistic
assuming that the length of the packet is known only after processing the
entire packet.

1.2 Initial Design Thoughts and Assumptions

The overall length of the data portion of the IP packet is straightforward to
implement; a register is incremented for each data byte processed. Therefore,
we will focus on the problem of processing the test statistic at wire speed
after the data is received (during the receipt of the header of the following
IP packet). It is unreasonable to believe that a floating point calculation
of the test statistic can be calculated in this time. For each character type
(256 charcters for the ASCII character set) an observed frequency must be
calculated (which requires a division), the square of the difference from the
expeceted frequency must be found, and the result must be divided by the
expected frequency. The sum of the 256 calculated values must be found
and compared to the threshold. This is an enormous amount of processing
to do in such a short time period. Therefore the convienient solution will
not suffice.

CS 670 - HW 1 3

Let’s start our initial alalysis by expanding the test statistic equation (1)
which results in the following expression for the 256 element ASCII character
set

256 12 . . 12
XQZZfe [i]" —2f. [Z]fom"‘fom (2)
=1

feli]

which can be simplified as

) 256 fo [2]2
X :Z Je [i]_Qfo[i]+ - . (3)
i=1 fe [IL]
Noting that f, [i] = CTM where C [i] is the indexed character occurance count

within the IP packet and L is the length of the IP packet in characters (bytes
in the ASCII case), we can express equation (3) as

256 . 2

Distributing the summation throughout the expression, equation (4) can be
written as follows

, B g6 26 oo
X nge[l]—zgc[l]+;L2fe[i]~ (5)

Equation (5) can be greatly simplified if one notes that > fo = 1. This is
a result of the obvious; we expect to get a character each time we receive
a character. This design ”requirement” along with the fact that Y C'[i] =
L(fori = 1...256) allows equation (5) to be further simplified into the
following expression

) 1 256
Y :1—2+ﬁz
=1

C [i]?
feli]

(6)

Using this form of the test statistic, we can state that the threshold alarm
should be fired if

1 256 0[2]2
_Hﬁ;fe[i] >T (7)
LRGPy (8)

CS 670 - HW 1 4

Letting Ty = T + 1 results in the final inequality

256

1

Using equation (9) for the test statistic allows the value T} to be stored
in the threshold register for alarm detection; and in addition, it allows the
final division by L? to be delayed until all the data has been received. Note:
This is the only use of the packet length L. In spite of its advantages over
equation (1), it still requires 256 multiplications and 256 divisions to achieve
the value for the sum in equation (8). As a result, the summation must be
simplified or calculated as the data is received in order to efficiently evaualte
the test statistic at line speed.

2
?E] > 1)

One design decision is to require all expected frequencies to take on a
value of the form 2% If this design decision still satisfies user requirements,
it can simplify the computations required in equation (9). The use of this

simplification allows equation (9) to be expressed as follows

1 256))
ﬁZQ‘”MC[i] > Ty (10)
=1

By replacing the division operation with a multiplication of a power of two,
we can replace the 256 division operations with 256 shift operations. This
speeds up the statistic evaluation dramitacally, but still leaves 256 multi-
plications and 256 additions in order to generate the sum of the square of
the individual character counts. In spite of the success in simplifying the
expression, we must now try to find a way to calculate the summation in
inequality (10) as characters arrive in order to have a chance at line speed
processing for the desired test statistic.

To try and find an incremental approach to build the sum in inequality
(10) we must first look at how the value of the summation changes when
an individual character count is incremented. When a character count is
incremented the summation increases in value according to the following
expression

Ax =271 (C i) +1)* = 27l [4]2. (11)

Expanding the expression gives

As =2 (C i + 20] +1) — 2FlO], (12)

CS 670 - HW 1 5

and collecting terms yields
Ay, = 27U+ 3] 4 271, (13)

Equation (13) is an incremental expression that will allow the value of the
summation in equation (10) to be calculated as incoming packet characters
are being counted and processed. Equation (13) is a very simple and fast
expression which can be evaluated by shifting the previous character count
according to the character’s stored expected frequency (since it is a multi-
plication of a power of two). We simply need a hardware register to store
the incremental result until all characters have been received for the packet
in order to use it for the final statistic calculation.

Since the summation in equation (10) is calculated as characters arrive,
we only need to divide the result by L? to calculate the statistic. This
should be workable in the available time. The result can be compared to
the threshold T} in order to determine of an alarm should be raised. It
is noteworthy that by incrementaly calculating the summation of equation
(10) we reduce post data calculations to one division operation, which is a
substantial improvement from the original calculation requirements.

1.3 Final Design Thoughts

The memory footprint for the above design would consist of an array of
256 32-bit words having the following data boundaries

e 3-bit generation number

e 13-bit expected frequency f, shift value x, where f, = 2%

e 16-bit character counter

The generation number would be used in the same fashion as the previous
threshold example to help elliminate initialization. The expected frequency
would hold the shift value associated with the indexed character. The char-
acter count would hold the current occurance count for the indexed character
for the packet being processed. In addition to the array, a few other registers
would be needed in order to implement the algorithm

e Current generator number

e Current summation value

CS 670 - HW 1 6

e Current packet character count
e Alarm threshold value

This results in an estimted footprint of 260 32-bit words which is quite small
for the posed problem.

1.4 Pseudo Code

Length = 0

GenNumber = 0

Sum = 0

Threshold = Tf
NUM_CHAR_TYPES = 256

for(uint i=0; i<NUM_CHAR_TYPES; i++)
charRecord[i] .ExpectedFreqShift = DESIRED_VALUE

while (RunProcess)

{
if ((GenNum mod 8) == 0)
{
for(uint i=0; i<NUM_CHAR_TYPES; i++)
{
charRecord[i] .Count = 0
charRecord[i] .GenNumber = 0
}
GenNum = 0O
}
Sum = 0
Length = 0

while(DataToBeProcessedInCurrentPacket())
{

character = ReadCharacter()

if (character)

{

CS 670 - HW 1 7

Length += 1
if (charRecord[character] .GenNum != GenNum)
{

charRecord[character] .GenNum = GenNum
charRecord[character] .Count = 1

Sum += (1 << charRecord[character] .ExpectedFreqShift)
}
else

{

Sum += (charRecord[character].Count <<
charRecord[character] .ExpectedFreqShift)
+ (1 << charRecord[character] .ExpectedFreqShift)

charRecord[character] .Count += 1

if (Sum/ (Length*Length) > Threshold)
Alarm()

