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* A quick review of TCP

* TCP implementation options

¢ Some other implementation considerations
* Optimizing TCP’s performance

* TCP over wireless networks
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A byte-stream oriented protocol
cs670

« TCP is designed to treat data as a generic
stream of bytes.

« Pays no attention to message boundaries,
etc.

* Bytes are sequence-numbered by the
sender (32-bit seq number)
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TCP transfer protocol

cs670

« Extended form of sliding window
algorithm

— Review of SWA:

All segs have sequence number

Multiple segs can be in flight

Sender starts timer when transmitting each seg
Receiver sends ACK for seg when all previous segs
have been received

If send timer times out before seg is ACKEd, sender
re-sends the seg

.
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Header
cs670
| 4 Bytes |
\ \
Source port # Dest port #
Sequence #
ACK #
Header ’ :
Length Flags (6) Window Size
Checksum Urgent Pointer
Options

) TCP Implementation 5
. W. Cox —Spring 2008
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TCP header flags

cs670

¢« URG - Indicates seg contains urgent data
¢ ACK —Indicates this is an ACK seg

e PSH-"Push”. Requests receiver to
deliver data to app without buffering

* RST —“Reset”. NACK.
¢ SYN - Connect request / connect accepted
e FIN — Connection release

TCP Implementation 6
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Urgent data

cs670

« A way to embed signaling in the data
stream (e.g, to kill the process on the
remote machine)

* Process:
— Sending app gives signal to TCP with “Urgent” flag set

— Sending TCP sets Urgent Pointer (points to end of
urgent data) in seg header and immediately transmits
buffer

— Receiving TCP can interrupt app to transfer urgent data

TCP Implementation 7
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TCP flow control

cs670

¢ Implemented by “Window Size” field in
header

* Window size set by receiver to indicate
how many bytes (not segs) can be sent
before next ACK

¢ Returned in ACK seg

TCP Implementation 8
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Segment size

e Seg =20 header bytes
+ ? Option header bytes
+0-~64KB data
¢ Max seg size = 64K-20 (max IP payload)
» Actual seg size determined by sending
TCP:
— Local MTU

— Local sending rules
— Truncated seg for Urgent Data

) TCP Implementation 9
. W. Cox —Spring 2008
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Well-known ports

cs670

¢ If aremote node wants to obtain a particular
service from a server, how does it know which
port # to make the request on?

e “Well-known ports” (ports 1-1023) are reserved
for standard services:
— E.g, 21=TCP, 80=HTTP, 110=POP3
— For the entire list, see

http://www.iana.org/assignments/port-numbers

TCP Implementation 10
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cs670
TCP Implementation

* A quick review of TCP

« TCP implementation options

* Some other implementation considerations
» Optimizing TCP’s performance

* TCP over wireless networks

TCP Implementation 11
G.W. Cox — Spring 2008

a
g
@
o}

12}
e
3
2
=
Q
E
o

o

o

>
7

2
5

I

=
T
153

o

5
<

=

O

7
o

=
£
=]
o

=t
=

TCP Implementation Options

cs670

e The TCP spec lays out the details of the
protocol

* However, some policy options are left to
the implementer

¢ Two implementations that use different
options will interoperate, but performance
may suffer

TCP Implementation 12
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TCP Imp Options: Send Policy

cs670

e The sending TCP accepts bytes from the
app and buffers them

« It is free to send them whenever it
chooses (except for pushed data, urgent
data, or a closed send window)

) TCP Implementation 13
. W. Cox —Spring 2008
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TCP Imp Options: Deliver Policy

cs670

¢ Receiving TCP will receive segments and
buffer them, handling errors and in-order
considerations.

« Itis free to deliver the data to the app
wherever it chooses (except for urgent
data or pushed data)

TCP Implementation 14
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TCP Imp Options: Accept Policy
cs670

< When segs arrive out of order, the
receiving TCP can:
1. Discard any segs that arrive out of order
2. Accept any seg that has a sequence number
within the receive window
* Note: Policy 1 is easier to implement and
needs less complex buffering, but Policy
2 is better for performance

TCP Implementation 15
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TCP Imp Options: Retransmit Policy
cs670

¢ Governs how the sender will handle are-
transmission
— First-Only Policy
— Batch Policy
— Individual Policy

TCP Implementation 16
G.W. Cox—Spring 2008




Retransmit Policy Options:

Retransmit Policy options:
Batch Policy

First-Only Policy

cs670 cs670

¢ Keep a send-order queue of unACKed segs.

» Keep asingle timeout timer

* When an ACK arrives, remove the ACKed seg(s)
from the queue and reset the timer

* When the timer times out, re-send the seg at the
head of the queue

¢ Same as First-Only except:

— When the timer times out, re-send the entire
queue

e Basically a go-back-n approach. Simple,
but may cause needless additional traffic

* Simple and low-traffic, but can be slow (the timer
for the second seg in the queue doesn’t start until
the first one times out)

‘The University Of Alabama in Huntsville Computer Science
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Retransmit Policy Options:

Individual Policy Retransmit Policy Options

cs670

cs670

« Keep atimeout timer for each seg in the « Ideally, the retransmit policy would be

queue selected to be compatible with the
- If any timer expires re-transmit just that receiver’s accept policy (e.g., if receiver
seg uses in-order, the best match is a batch

retransmit policy).

¢ But you can’t count on that in real

« Complex implementation. Very traffic
P P y networks

efficient.
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TCP Imp Options:
ACKpPoﬁcy

e The receiving TCP must ACK segs that are
received in order. It can do so:
— Immediately — Immediately send an empty ACK segment
for the received data seg

— Cumulative — Hold the ACK until it can be piggybacked
on outgoing data (recall that ACK applies to the seg
received and all before it). Keep atimer to prevent too
long a delay.

* Most installations use Cumulative because it
yields lower traffic loads, but this is a good bit
more complex to implement and manage.

) TCP Implementation 21
. W. Cox —Spring 2008
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¢ A quick review of TCP

* TCP implementation options

* Some other implementation considerations
* Optimizing TCP’s performance

* TCP over wireless networks
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Setting the segment size

cs670

« Max = 64KB
e Min/default = 556B
« Often restricted to 1460 data bytes:
1460 data bytes
+ 20 TCP header
+ 20 IP header
1500 bytes (One Ethernet payload)
e Actual Max seg size is negotiated by
sender and receiver during setup

TCP Implementation 23
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A problem with the window size field
cs670

¢ Window size field is 16 bits => 64KB max
window

¢ Not enough for many purposes:

— Example (Tanenbaum):
* On aT3line (44.7 Mbps), it takes 12 msec to send a
64KB window.
« If RTT is 50 msec, sender is idle 75% of the time
waiting for ACKs

TCP Implementation 24
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A window size patch

cs670

* “Window scale” is set during negotiation*

» Sets scale factor used in interpreting the
Window Size field:
— Act_Win_Size = Win_Size_Field x 2Win_scale

+ Allows window sizes up to ~23°B

TeRRGehfdion 25
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A potential TCP deadlock

cs670

* When the receiver wants the sender to
stop sending temporarily, it will advertise
awindow size of 0. The sender will stop.

« Later, when the receiver can accept data
again, it will advertise a larger window
size. The sender will re-start.

* A deadlock occurs if the second
advertisement is lost.

TCP Implementation 26
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Deadlock avoidance

cs670

* When a sender receives a Window Size =0,
it starts a “persistence timer”

¢ When the persistence timer times out, the
sender sends a query to the receiver, and
the receiver sends the current advertised
window size

» |f the size still =0, the sender re-starts the
persistence timer

TCP Implementation 27
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A quick review of TCP

« TCP implementation options

* Some other implementation considerations
* Optimizing TCP’s performance

* TCP over wireless networks
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Deciding when to send a segment
cs670

Optimizing performance

¢ Within the negotiated seg size limits, the sending
TCP has to decide when to stop buffering data
bytes and send them

* When bytes come in slowly from the app (e.g., a
user typing), how does the sending TCP decide
when to send the buffered bytes?

— If you send each one separately, you are using 40
overhead bytes (20 send header and 20 ACK header) to
send 1 data byte

— If you wait to build a large seg, the first bytes typed may
be impossibly late

e Deciding when to send a segment
e The Silly Window Syndrome
¢ Managing the Congestion Window
¢ Managing the timeout timer

‘The University Of Alabama in Huntsville Computer Science
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One way of helping the problem —

delayed ACK Another way: Nagle’s Algorithm

cs670

cs670

* When data comes in a byte at a time from the app,
— Send the first byte immediately
— Buffer succeeding bytes until the first byte is ACKed,
then send them in one seg
* This is a good strategy when RTT is variable:

— When network is lightly loaded, the impact of small segs
is less. Since ACKs return quickly, more small segs are
sent

— When the network is congested, ACKs return slowly and
more data is packed in each seg.
* Note: Nagle’s performance may not be good
enough for highly interactive applications —
sometimes it is disabled

e The receiver can delay ACKing a small seg
(typ: 0.5 sec) in the hope of receiving
another one that can be ACKed in the
same ACK seg

e Fairly common approach, but not practical
when fast response needed, and sender is
still inefficient
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Optimizing performance

« Deciding when to send a segment
e The Silly Window Syndrome
¢ Managing the Congestion Window
¢ Managing the timeout timer

) TCP Implementation 33
. W. Cox —Spring 2008
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_A related problem:
Silly Window Syndrome

cs670

¢ Occurs when data is sent in large blocks,
but receiving app reads a byte at a time:

« Sending TCP sends until rcv buffer full

* Receiving TCP advertises window size =0

« Receiving app reads a byte

« Receiving TCP advertises window size =1

Sending TCP sends a byte

TCP Implementation 34
G. W. Cox— Spring 2008
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A fix for the Silly Window Syndrome
cs670

« Receiver is prevented from advertising
when only small buffer space is available
It can only advertise when either:
— It can handle the negotiated max seg size, or
— half of the receive buffer is empty

TCP Implementation 35
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Optimizing performance

cs670

¢ Deciding when to send a segment
¢ The Silly Window Syndrome
e Managing the Congestion Window
¢ Managing the timeout timer

TCP Implementation 36
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Congestion control

« Recall that basic TCP considers two
numbers to set the send window size:
— Advertised window size — set by the receiver to
prevent sender from overrunning the receive
buffer (flow control)

— Congestion window size — set by the sender to
try to prevent aggravating network congestion
(congestion control)

« Send window size is set to the minimum of
the two numbers

) TCP Implementation 37
. W. Cox —Spring 2008
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Managing congestion window size

cs670

¢ The basic Slow Start algorithm (“Additive
increase, multiplicative decrease”)
— At start, set CW = 1 max seg size
— If n segs ACKed, CW=CW + n max seg sizes
— If timeout, CW=CW /2
— Once CW is reduced, it is not increased again

TCP Implementation 38
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A consideration

cs670

e The basic algorithm does not change CW
after it is reduced.

* In complex networks, congestion will
come and go.

* We'd like to have a scheme that reduces
CW when congestion is high, but
increases it when the congestion is
relieved

TCP Implementation 39
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Refined Slow Start

cs670

« When timeout occurs:
— Set threshold = CW/2
— Reset CW to 1 and start Slow Start again

— After CW >=threshold, only increase CW by 1
for each ACK received (regardless of how
many segs the ACK is for)

TCP Implementation 40
G.W. Cox—Spring 2008
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A typical CW profile

Optimizing performance
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* How do we set the value for the timeout
timer?
— Too long — performance suffers because it

takes a long time to discover that a seg has
been lost

— Too short — many unnecessary re-
transmissions, increasing network load

TCP Implementation 43
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Managing the timeout timer Managing the timeout timer
cs670 cs670

« Timeout interval for a connection should
be related to the RTT for that connection

¢ But on the Internet, RTT can vary wildly
¢ We would like a dynamic measure of RTT

TCP Implementation 44
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Dynamic RTT measurement —

Dynamic RTT measurement — _
exponential averaging

simple averaging

cs670

cs670

e For each connection, TCP maintains a AvgRTT = alpha x AvgRTT + (1-alpha) x measured RTT
variable AvgRTT

e When an ACK arrives, TCP calculates the
RTT experienced

e AvgRTT is calculated by simple averaging

« Problem: treats long-ago behavior as
importantly as recent behavior

where O <alpha<1

* This formulation favors recent measurements

* Smaller alpha causes more weight on recent
measurements

* Problem: works well for small variance, but does
not react well to an abrupt, large change in RTT

‘The University Of Alabama in Huntsville Computer Science
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Jacobson’s Algorithm: The Idea
cs670

Setting timeout from RTT

cs670

¢ Instead of calculating AvgRTT by
averaging, take the variability of the RTT
samples into account

e Generally, timeout is calculated by:
timeout = beta x AvgRTT

* In the early days of the Internet, beta was
setto 2

e Problem: when the variance in RTT is
wide, a fixed beta may not work

« The fix: Jacobson’s Algorithm tracks
deviation of the measured RTT and sets
beta accordingly.
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Jacobson’s Algorithm: Approach

cs670

SampleRTT = ACK_time — SEND_time

Diff = SampleRTT — Current Estimated RTT

EstimatedRTT = EstimatedRTT + § x Diff (where 0 <=8 <=1)
Dev = Dev + 3 (|Diff| - Dev)

THEN:
Timeout = EstimatedRTT + p x Dev (typical p = 4)

N TCP Implementation 49
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How Jacobson’s Alg acts

cs670

¢ When variability is small, Timeout tends
toward the long-term average of RTT

* When variability is large, Timeout tends
toward p x (magnitude of the variation)

TCP Implementation 50
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A problem with timeouts

cs670

« When network is congested, a higher
fraction of attempted sends will timeout
due to delay and the timed-out senders
will re-send

* This increases the traffic that the network
is trying to handle, probably increasing
the congestion and lengthening delay

TCP Implementation 51
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A patrtial fix: Exponential timeout
backoff

cs670

e For each re-transmission, double the
timeout
— For example:
« Original send —timeout = x
¢ First re-send —timeout = 2x
« Second re-send —timeout = 4x

TCP Implementation 52
G.W. Cox—Spring 2008
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An over-all fix: Karn’s Algorithm
cs670

More problems with setting timeouts
cs670

¢ Use Jacobsons’ Alg to dynamically adjust
RTT until a re-transmission occurs

¢ Do not use the RTT of re-transmitted segs
in the AvgRTT calculation

¢ Use Exponential Timeout Backoff for all
re-transmissions until a non-re-
transmitted seg is ACKed

e Then, re-start Jacobson's Alg

« Assume you send a seg, timeout, then re-
send

 If you get an ACK, is this the ACK for the
first send or the second?

 If you guess wrong, you will corrupt the
value of AvgRTT

‘The University Of Alabama in Huntsville Computer Science
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TCP over wireless

cs670

cs670
TCP Implementation

e The earliest versions of TCP assumed that
timeouts could be either caused by congestion or
by lost packets

* As wired network reliability improved, TCP was
optimized to emphasize the congestion case (the
retransmit service, which was designed for error
handling, has been specialized for congestion
control)

e But wireless links are much less reliable and lost
packets can occur frequently

* A quick review of TCP

« TCP implementation options

* Some other implementation considerations
» Optimizing TCP’s performance

* TCP over wireless networks
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An example of how TCP is not
optimized for wireless

cs670

« When segs timeout, TCP re-starts Slow

Start and sends more slowly (assuming
this will relieve congestion)

* But when data is lost (happens often on a

wireless link), the best thing to do for
performance is to re-send quickly

e Furthermore, many wireless systems (e.g.,

802.11) use L2 re-transmission and
slowdown. L2 re-trans causes slowdown

TCP and disconnections
cs670

* Mobile users may experience fairly long

disconnects

If a conventional TCP connection was
disconnected, TCP using normal settings
would timeout and re-transmit repeatedly,
doubling interval each time (up to one
minute) for a max of 12 times

If the mobile reconnected during this time,
it might have to wait an entire minute

before the datastream resumed.

‘The University Of Alabama in Huntsville Computer Science
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which can trigger slow-start.

) TCP Implementation 57 TCP Implementation 58
. W. Cox —Spring 2008 G. W. Cox— Spring 2008

Some things that TCP needs to
tolerate to run on wireless networks
cs670

TCP mods are possible, but...

cs670

» High error rates
* Temporary disconnects during handover

» Heterogeneous wired/wireless connections
(and, sender may not know the composition)

e Some proposals (e.g., RFC 3168)
recommend returning the timeout
structure to error control and adding an
Explicit Congestion Notification (ECN)
mechanism

¢ But this would require changing all TCP
installations, most of which run over wired
systems and operate fine as-is.

* NOTE: The fact that conventional TCP is not
designed to handle these problem does not
mean that it won’t work on wireless systems,
just that its performance is not optimized.
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‘The University Of Alabama in Huntsville

Some fixes for TCP over wireless

cs670

* Indirect TCP (I-TCP)
* Snooping TCP
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The University Of Alabama in Huntsville

Indirect TCP (I-TCP)

cs670

*« Theidea: Combine conventional TCP on
the wired network with a Wireless TCP
version tuned to run on the wireless part.
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I-TCP

cs670
‘ Conventional TCP ‘ Wireless TCP ‘
Base .
Sender Station Mobl|le
Receiver
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I-TCP: Plusses and Minuses

cs670

e Plusses:
— No changes to existing protocol
— Wireless errors do not directly affect wired system
e Minuses:
— Breaks the paradigm of TCP operation —an ACK does
not mean that the receiver got the seg
— The base station buffers data for the mobile and ACKs it
as it arrives. When a handover occurs, there is no way
to get the sender to re-send the buffered data — the base
station must forward it.
— To tolerate disconnections, must have very large buffers
—when disconnect is followed by handover, even more
data to forward.
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Snooping TCP

cs670

« Uses a single end-to-end TCP connection
(so the paradigm is not broken)

« Base station “snoops” on the connection
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“Snooping”

cs670

¢ The base station buffers and forwards all
packets destined to the mobile (without
ACKing the sender)
¢ Monitors the connection from the mobile
to detect ACKs and gaps in transmitted
data
— Missing ACKs: Performs local re-transmits
based on a short timeout timer
— Missing data: sends NACK to mobile for re-
transmit
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Snooping TCP —Plusses and
Minuses

cs670

e Plusses:
— Preserves the end-to-end TCP paradigm
— No changes in the wired part of the network
— Handovers to new base stations happen automatically
(any buffered data will simply time out at the sender and
be re-transmitted)
* Minuses:
— Problems in the wireless segment can affect the wired
segment (e.g., lost wireless packets can trigger Slow
Start)
— End-to-end encryption at L3 (e.g, IPSec) foils snooping
— Does not help in the event of a disconnect (there are no
ACKs to snoop)
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