Morgan Kaufmann Publishers

Review: Pipelining

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism improves performance

Time 7 8 9 0 i i2 2 Al
= R R R R R ORE OR

Tasic
ordel

v 5= Four loads:
6 e
: 8 .l%l | Speedup
o S]] =8/3.5=23
me 1|u 11 12 1 2AM Non_stop
e Speedup
. s = 2n/0.5n + 1.5~ 4
o %. = number of stages
: S0=

Chapter 4 — The Processor — 2

Chapter 4 — The Processor

1 February, 2012

Morgan Kaufmann Publishers

| MIPS Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read

EX: Execute operation or calculate address

MEM: Access memory operand
WB: Write result back to register

Chapter 4 — The Processor — 3

| Pipeline Performance

‘ Single-cycle (T = 800ps) ‘

Program
execution Time 200 400 600 800 1000 1200 1400 1600 1800
order T T T T T T T T T

{in instructions)

Instruction Data

hw $1, 100(S0)| "3 " [heg AL | O%B hieg
Iw $2, 200(S0) 800 ps eteton | Reg ALU | DM@ | Reg
Iw $3, 300(50) 800 ps '”S":CC;‘W
o q 800 ps
| Pipelined (T,= 200ps) |
Program
execution 200 400 600 800 1000 1200 1400
order Time T T T T T T T

(in instructions)

Instruction Data

lw $1, 100($0) | “oen Reg| ALU access |19
I $2,200(50) 200 ps e [Reg| A | 232 IReg
w 53, 300(30) 200 ps || |Ren| A | D% ke

200 ps 200ps 200 ps 200 ps 200 ps

Chapter 4 — The Processor — 4

Chapter 4 — The Processor

1 February, 2012

Morgan Kaufmann Publishers 1 February, 2012

| Pipeline Speedup

| If all stages are balanced
i.e., all take the same time

Time between instructions ;pejineq
= Time between instructions,,nsipeiined
Number of stages

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not
decrease

Chapter 4 — The Processor — 5

| Hazards

| Situations that prevent starting the next
instruction in the next cycle
Structure hazards
A required resource is busy
Data hazard

Need to wait for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction

Chapter 4 — The Processor — 6

Chapter 4 — The Processor 3

Morgan Kaufmann Publishers

Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access
Instruction fetch would have to stall for that
cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require

separate instruction/data memories
Or separate instruction/data caches

Chapter 4 — The Processor — 7

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3

N 200 400 600 800 1000 1200 1400 1600
Time T T T T T T T T

bubble) (bubble) (bubble bubble) (bubble
Re)
bubble) (bubble, (bubble bubble) (bubble
Q J

Chapter 4 — The Processor — 8

Chapter 4 — The Processor

1 February, 2012

Morgan Kaufmann Publishers

| Control Hazards

outcome

Still working on ID stage of branch

In MIPS pipeline

target early in the pipeline
Add hardware to do it in ID stage

| Branch determines flow of control
Fetching next instruction depends on branch

Pipeline can'’t always fetch correct instruction

Need to compare registers and compute

Chapter 4 — The Processor — 9

| Stall on Branch

before fetching next instruction

Program

| Wait until branch outcome determined

execution 1. 200 400 600 800 1000 1 2‘00 1400

order ' T T T '

(in instructions)

Instruction Data
Reg| ALU aeans | Reg ‘

fetch

add $4, $5, $6

beq S1, $2, 40

cccccc

Instruction ’ o
200 ps fetch

]l]

Reg| ALU Data ch‘
bubble X bubble)bubble; w bubble,
& Q) Q.) Q
cti Data

or §7, $8, $9 Instrugtion
400 ps fetch

Chapter 4 — The Processor — 10

Chapter 4 — The Processor

1 February, 2012

Morgan Kaufmann Publishers 1 February, 2012

| Branch Prediction

| Longer pipelines can’t readily determine

branch outcome early

Stall penalty becomes unacceptable
Predict outcome of branch

Only stall if prediction is wrong
In MIPS pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay

Chapter 4 — The Processor — 11

| More-Realistic Branch Prediction

| Static branch prediction

Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction

Hardware measures actual branch behavior

e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 12

Chapter 4 — The Processor 6

Morgan Kaufmann Publishers 1 February, 2012

| MIPS Pipelined Datapath

| iF: instruction fetch

MEM: Memory acoess ! WB: Wiite back

I
u —- PC M| Address
x

[meme |
Right-to-left wal |
flow leads to [we | .
hazards ! —

Chapter 4 — The Processor — 13

| Pipeline registers

| Need registers between stages
To hold information produced in previous cycle

1
o oo —

Chapter 4 — The Processor — 14

Chapter 4 — The Processor 7

Morgan Kaufmann Publishers

| Multi-Cycle Pipeline Diagram

Form showing resource usage

Time (in clock cycles.
CC1 cC2
Program
execution
order
{in instructions} =
i
w10, 20081} | EHoR
1A
B}

)
CC3

cCs

|

(o]

C6 C

Cc7

(o]
[e}
-3
o
(e}
@

Chapter 4 — The Processor — 15

Traditional form

| Multi-Cycle Pipeline Diagram

v

cc4 cos cco o7 coa cco
CC4 CCs CCo CC7 cC8 cCco
Program
execuiion
order
{in instructions)
Instruction | Instruction : Data .
Iw $10, 20($1) tetch decode | TXEOMION | ees | Write back
Instruction | Instruction Data.
sub S11, $2, $3 fatch decode Execution acoess Write back
Instruction | Instruction Data ;
add $12, $3. $4 retoh docode | EXERUtON [s | WVrite back
Instruction | Instruction " Data
Iw $13, 24($1) tetoh docode | EXecution | 52 | Write back
Instruction | Instruction Data :
add $14, $5, $6 tetoh decode | EXECUtion | Jctocs ‘Wme back

Chapter 4 — The Processor — 16

Chapter 4 — The Processor

1 February, 2012

