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Review: Pipelining

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism improves performance
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| MIPS Pipeline

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read

EX: Execute operation or calculate address

MEM: Access memory operand
WB: Write result back to register
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| Pipeline Performance
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| Pipeline Speedup

| If all stages are balanced
i.e., all take the same time

Time between instructions ;pejineq
= Time between instructions,,nsipeiined
Number of stages

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not
decrease
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| Hazards

| Situations that prevent starting the next
instruction in the next cycle
Structure hazards
A required resource is busy
Data hazard

Need to wait for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction
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Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access
Instruction fetch would have to stall for that
cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require

separate instruction/data memories
Or separate instruction/data caches
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Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $t0, $t1
sub $t2, $s0, $t3
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| Control Hazards

outcome

Still working on ID stage of branch

In MIPS pipeline

target early in the pipeline
Add hardware to do it in ID stage

| Branch determines flow of control
Fetching next instruction depends on branch

Pipeline can'’t always fetch correct instruction

Need to compare registers and compute
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| Stall on Branch

before fetching next instruction

Program

| Wait until branch outcome determined

execution 1. 200 400 600 800 1000 1 2‘00 1400

order ' T T T '

(in instructions)

Instruction Data
Reg| ALU aeans | Reg ‘

fetch

add $4, $5, $6

beq S1, $2, 40

cccccc

Instruction ’ o
200 ps fetch

]l ]

Reg| ALU Data ch‘
bubble X bubble)bubble; w bubble,
& Q) Q. ) Q
cti Data

or §7, $8, $9 Instrugtion
400 ps fetch

Chapter 4 — The Processor — 10

Chapter 4 — The Processor

1 February, 2012



Morgan Kaufmann Publishers 1 February, 2012

| Branch Prediction

| Longer pipelines can’t readily determine

branch outcome early

Stall penalty becomes unacceptable
Predict outcome of branch

Only stall if prediction is wrong
In MIPS pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay
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| More-Realistic Branch Prediction

| Static branch prediction

Based on typical branch behavior

Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken

Dynamic branch prediction

Hardware measures actual branch behavior

e.g., record recent history of each branch

Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history
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| MIPS Pipelined Datapath

| iF: instruction fetch

MEM: Memory acoess ! WB: Wiite back
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| Pipeline registers

| Need registers between stages
To hold information produced in previous cycle
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| Multi-Cycle Pipeline Diagram

Form showing resource usage
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Traditional form

| Multi-Cycle Pipeline Diagram
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