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| Memory Technology

| Static RAM (SRAM)

0.5ns — 2.5ns, $2000 — $5000 per GB
Dynamic RAM (DRAM)

50ns — 70ns, $20 — $75 per GB
Magnetic disk

5ms — 20ms, $0.20 — $2 per GB
|deal memory

Access time of SRAM

Capacity and cost/GB of disk

Based on lecture slides
provided by Morgan/Kauffman

| Principle of Locality

| Programs access a small proportion of
their address space at any time
Temporal locality

ltems accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables
Spatial locality

ltems near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Based on lecture slides
provided by Morgan/Kauffman
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| Taking Advantage of Locality

| Memory hierarchy
Store everything on disk

Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
Main memory

Copy more recently accessed (and

nearby) items from DRAM to smaller

SRAM memory

Cache memory attached to CPU

Based on lecture slides
provided by Morgan/Kauffman

| Memory Hierarchy Levels

I — | Block (aka line): unit of copying
AddreSSlTlnstruction Addressu Data word May be multiple words
l cache (I) ‘ l cache (D) ‘ . .
If accessed data is present in
Block addressl I Block upper level

Hit: access satisfied by upper level
Hit ratio: hits/accesses

Main Memory If accessed data is absent
Miss: block copied from lower level
Time taken: miss penalty
Page address Page Miss ratio: misses/accesses
=1 — hit ratio
Then accessed data supplied from
Disk upper level

Based on lecture slides
provided by Morgan/Kauffman
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| Direct Mapped Cache
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Memory

Based on lecture slides
provided by Morgan/Kauffman

| Location determined by address

Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

#Blocks is a
power of 2

Use low-order
address bits

| Address Subdivision

i I [ Byte |

| | |offset|
o e Jao
At - N
Tag
ag !
Index
Index  Valid Tag Data
0
1
2
1021
1022
1023
20 32
J

Based on lecture slides
provided by Morgan/Kauffman
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Direct mapped

Block# 01234567

Data

Tag

Search T

Based on lecture slides
provided by Morgan/Kauffman

Set associative

Set# 0 1 2 3

Data

1

Tal
g2

Search T T

| Associative Cache Example

Fully associative

Data

1
2

S TTTTTTT

Tag

Based on lecture slides
provided by Morgan/Kauffman

| Cache Misses

| On cache hit, CPU proceeds normally
On cache miss
Stall the CPU pipeline

Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access
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| Write-Through

| On data-write hit, could just update the block in
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer
e.g., if base CPl = 1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPl =1+ 0.1x100 = 11
Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Based on lecture slides
provided by Morgan/Kauffman 9

| Write-Back

| Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty
When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Based on lecture slides
provided by Morgan/Kauffman 10
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| Measuring Cache Performance

| Components of CPU time

Program execution cycles
Includes cache hit time

Memory stall cycles
Mainly from cache misses

With simplifying assumptions:
Memory stall cycles

_Memory accesses

xMiss rate xMiss penalty
Program

_Ins'[ructions>< Misses
Program Instruction

Based on lecture slides
provided by Morgan/Kauffman

xMiss penalty

1

| Average Access Time

| Hit time is also important for performance
Average memory access time (AMAT)
AMAT = Hit time + Miss rate x Miss penalty

Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, |-cache miss rate = 5%
AMAT =1+ 0.05 x 20 = 2ns

2 cycles per instruction

Based on lecture slides
provided by Morgan/Kauffman
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| Replacement Policy

Direct mapped: no choice

Set associative
Prefer non-valid entry, if there is one
Otherwise, choose among entries in the set

Least-recently used (LRU)

Choose the one unused for the longest time

Simple for 2-way, manageable for 4-way, too hard
beyond that

Random

Gives approximately the same performance
as LRU for high associativity

Based on lecture slides
provided by Morgan/Kauffman 13

| Multilevel Caches

Primary cache attached to CPU
Small, but fast

Level-2 cache services misses from

primary cache

Larger, slower, but still faster than main
memory

Main memory services L-2 cache misses
Some high-end systems include L-3 cache

Based on lecture slides
provided by Morgan/Kauffman
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| Virtual Memory

| Use main memory as a “cache” for
secondary (disk) storage
Managed jointly by CPU hardware and the
operating system (OS)
Programs share main memory

Each gets a private virtual address space
holding its frequently used code and data

Protected from other programs
CPU and OS translate virtual addresses to
physical addresses

VM “block” is called a page

VM translation “miss” is called a page fault

Based on lecture slides
provided by Morgan/Kauffman 15

| Address Translation

| Fixed-size pages (e.g., 4K)

Virtual address

Virtual addresses Physical addresses 3130292827 e 15141312111098 oot 3210
. Address translation | | -~ B |
== | Virtual page number | Page offset

Translation
CCe——
Disk addresses LI F-7 SETTIRITEY ITEIYPIIEN 1514131211109 8 oofoeree 3z210
‘ Physical page number ‘ Page offset
Physical address
Based on lecture slides
provided by Morgan/Kauffman 16
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| Page Fault Penalty

| On page fault, the page must be fetched
from disk
Takes millions of clock cycles
Handled by OS code

Try to minimize page fault rate
Fully associative placement
Smart replacement algorithms

Based on lecture slides
provided by Morgan/Kauffman 17

| Page Tables

| Stores placement information

Array of page table entries, indexed by virtual
page number

Page table register in CPU points to page
table in physical memory

If page is present in memory

PTE stores the physical page number

Plus other status bits (referenced, dirty, ...)
If page is not present

PTE can refer to location in swap space on
disk

Based on lecture slides
provided by Morgan/Kauffman 18
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| Translation Using a Page Table

| I Page table
Page t

41 30 29 28 27/
| |
| Virtual page number Page offset |
L I}

Valid Physical page number

8

15 14 13 12 11 10 9 B 3210

Based on lecture slides
provided by Morgan/Kauffman 19

| Replacement and Writes

| To reduce page fault rate, prefer least-
recently used (LRU) replacement

Reference bit (aka use bit) in PTE setto 1 on
access to page

Periodically cleared to 0 by OS

A page with reference bit = 0 has not been
used recently

Disk writes take millions of cycles
Block at once, not individual locations
Write through is impractical
Use write-back
Dirty bit in PTE set when page is written

Based on lecture slides
provided by Morgan/Kauffman 20
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| Concluding Remarks

Fast memories are small, large memories are
slow

We really want fast, large memories ®

Caching gives this illusion ©
Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy
L1 cache < L2 cache « ... & DRAM memory
< disk
Memory system design is critical for
multiprocessors

Based on lecture slides
provided by Morgan/Kauffman
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