
Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 1

1
Based on lecture slides

provided by Morgan/Kauffman

Memory Technology

� Static RAM (SRAM)

� 0.5ns – 2.5ns, $2000 – $5000 per GB

� Dynamic RAM (DRAM)

� 50ns – 70ns, $20 – $75 per GB

� Magnetic disk

� 5ms – 20ms, $0.20 – $2 per GB

� Ideal memory

� Access time of SRAM

� Capacity and cost/GB of disk

§
5

.1
 In

tro
d

u
ctio

n

2
Based on lecture slides

provided by Morgan/Kauffman

Principle of Locality

� Programs access a small proportion of
their address space at any time

� Temporal locality

� Items accessed recently are likely to be
accessed again soon

� e.g., instructions in a loop, induction variables

� Spatial locality

� Items near those accessed recently are likely
to be accessed soon

� E.g., sequential instruction access, array data

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 2

3
Based on lecture slides

provided by Morgan/Kauffman

Taking Advantage of Locality

� Memory hierarchy

� Store everything on disk

� Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

� Main memory

� Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

� Cache memory attached to CPU

4
Based on lecture slides

provided by Morgan/Kauffman

Memory Hierarchy Levels

� Block (aka line): unit of copying

� May be multiple words

� If accessed data is present in
upper level
� Hit: access satisfied by upper level

� Hit ratio: hits/accesses

� If accessed data is absent

� Miss: block copied from lower level

� Time taken: miss penalty

� Miss ratio: misses/accesses
= 1 – hit ratio

� Then accessed data supplied from
upper level

Processor

cache (D)cache (I)

Main Memory

Disk

Instruction Data word

Block address

Page

Address Address

Block

Page address

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 3

5
Based on lecture slides

provided by Morgan/Kauffman

Direct Mapped Cache

� Location determined by address

� Direct mapped: only one choice

� (Block address) modulo (#Blocks in cache)

� #Blocks is a
power of 2

� Use low-order
address bits

6
Based on lecture slides

provided by Morgan/Kauffman

Address Subdivision

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 4

7
Based on lecture slides

provided by Morgan/Kauffman

Associative Cache Example

8
Based on lecture slides

provided by Morgan/Kauffman

Cache Misses

� On cache hit, CPU proceeds normally

� On cache miss

� Stall the CPU pipeline

� Fetch block from next level of hierarchy

� Instruction cache miss

� Restart instruction fetch

� Data cache miss

� Complete data access

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 5

9
Based on lecture slides

provided by Morgan/Kauffman

Write-Through

� On data-write hit, could just update the block in
cache
� But then cache and memory would be inconsistent

� Write through: also update memory

� But makes writes take longer
� e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
� Effective CPI = 1 + 0.1×100 = 11

� Solution: write buffer
� Holds data waiting to be written to memory

� CPU continues immediately
� Only stalls on write if write buffer is already full

10
Based on lecture slides

provided by Morgan/Kauffman

Write-Back

� Alternative: On data-write hit, just update
the block in cache

� Keep track of whether each block is dirty

� When a dirty block is replaced

� Write it back to memory

� Can use a write buffer to allow replacing block
to be read first

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 6

11
Based on lecture slides

provided by Morgan/Kauffman

Measuring Cache Performance

� Components of CPU time
� Program execution cycles

� Includes cache hit time

� Memory stall cycles
� Mainly from cache misses

� With simplifying assumptions:

§
5

.3
 M

e
a

s
u

rin
g

 a
n

d
 Im

p
ro

vin
g
 C

a
c
h

e
 P

e
rfo

rm
a
n

ce

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

12
Based on lecture slides

provided by Morgan/Kauffman

Average Access Time

� Hit time is also important for performance

� Average memory access time (AMAT)

� AMAT = Hit time + Miss rate × Miss penalty

� Example

� CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

� AMAT = 1 + 0.05 × 20 = 2ns

� 2 cycles per instruction

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 7

13
Based on lecture slides

provided by Morgan/Kauffman

Replacement Policy

� Direct mapped: no choice
� Set associative

� Prefer non-valid entry, if there is one
� Otherwise, choose among entries in the set

� Least-recently used (LRU)
� Choose the one unused for the longest time

� Simple for 2-way, manageable for 4-way, too hard
beyond that

� Random
� Gives approximately the same performance

as LRU for high associativity

14
Based on lecture slides

provided by Morgan/Kauffman

Multilevel Caches

� Primary cache attached to CPU

� Small, but fast

� Level-2 cache services misses from
primary cache

� Larger, slower, but still faster than main
memory

� Main memory services L-2 cache misses

� Some high-end systems include L-3 cache

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 8

15
Based on lecture slides

provided by Morgan/Kauffman

Virtual Memory

� Use main memory as a “cache” for
secondary (disk) storage
� Managed jointly by CPU hardware and the

operating system (OS)

� Programs share main memory
� Each gets a private virtual address space

holding its frequently used code and data
� Protected from other programs

� CPU and OS translate virtual addresses to
physical addresses
� VM “block” is called a page
� VM translation “miss” is called a page fault

§
5

.4
 V

irtu
a
l M

e
m

o
ry

16
Based on lecture slides

provided by Morgan/Kauffman

Address Translation

� Fixed-size pages (e.g., 4K)

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 9

17
Based on lecture slides

provided by Morgan/Kauffman

Page Fault Penalty

� On page fault, the page must be fetched
from disk

� Takes millions of clock cycles

� Handled by OS code

� Try to minimize page fault rate

� Fully associative placement

� Smart replacement algorithms

18
Based on lecture slides

provided by Morgan/Kauffman

Page Tables

� Stores placement information
� Array of page table entries, indexed by virtual

page number

� Page table register in CPU points to page
table in physical memory

� If page is present in memory
� PTE stores the physical page number

� Plus other status bits (referenced, dirty, …)

� If page is not present
� PTE can refer to location in swap space on

disk

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 10

19
Based on lecture slides

provided by Morgan/Kauffman

Translation Using a Page Table

20
Based on lecture slides

provided by Morgan/Kauffman

Replacement and Writes

� To reduce page fault rate, prefer least-
recently used (LRU) replacement
� Reference bit (aka use bit) in PTE set to 1 on

access to page
� Periodically cleared to 0 by OS
� A page with reference bit = 0 has not been

used recently

� Disk writes take millions of cycles
� Block at once, not individual locations
� Write through is impractical
� Use write-back
� Dirty bit in PTE set when page is written

Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 11

21
Based on lecture slides

provided by Morgan/Kauffman

Concluding Remarks

� Fast memories are small, large memories are
slow
� We really want fast, large memories �

� Caching gives this illusion ☺

� Principle of locality
� Programs use a small part of their memory space

frequently

� Memory hierarchy
� L1 cache ↔ L2 cache ↔ … ↔ DRAM memory

↔ disk

� Memory system design is critical for
multiprocessors

§
5

.1
2
 C

o
n
c
lu

d
in

g
 R

e
m

a
rks

