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Memory Technology

� Static RAM (SRAM)

� 0.5ns – 2.5ns, $2000 – $5000 per GB

� Dynamic RAM (DRAM)

� 50ns – 70ns, $20 – $75 per GB

� Magnetic disk

� 5ms – 20ms, $0.20 – $2 per GB

� Ideal memory

� Access time of SRAM

� Capacity and cost/GB of disk
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Principle of Locality

� Programs access a small proportion of 
their address space at any time

� Temporal locality

� Items accessed recently are likely to be 
accessed again soon

� e.g., instructions in a loop, induction variables

� Spatial locality

� Items near those accessed recently are likely 
to be accessed soon

� E.g., sequential instruction access, array data
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Taking Advantage of Locality

� Memory hierarchy

� Store everything on disk

� Copy recently accessed (and nearby) 
items from disk to smaller DRAM memory

� Main memory

� Copy more recently accessed (and 
nearby) items from DRAM to smaller 
SRAM memory

� Cache memory attached to CPU
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Memory Hierarchy Levels

� Block (aka line): unit of copying

� May be multiple words

� If accessed data is present in 
upper level
� Hit: access satisfied by upper level

� Hit ratio: hits/accesses

� If accessed data is absent

� Miss: block copied from lower level

� Time taken: miss penalty

� Miss ratio: misses/accesses
= 1 – hit ratio

� Then accessed data supplied from 
upper level

Processor

cache (D)cache (I)

Main Memory

Disk

Instruction Data word

Block address

Page

Address Address

Block

Page address
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Direct Mapped Cache

� Location determined by address

� Direct mapped: only one choice

� (Block address) modulo (#Blocks in cache)

� #Blocks is a 
power of 2

� Use low-order 
address bits
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Address Subdivision
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Associative Cache Example

8
Based on lecture slides 

provided by Morgan/Kauffman

Cache Misses

� On cache hit, CPU proceeds normally

� On cache miss

� Stall the CPU pipeline

� Fetch block from next level of hierarchy

� Instruction cache miss

� Restart instruction fetch

� Data cache miss

� Complete data access



Morgan Kaufmann Publishers 4 April, 2012

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy 5

9
Based on lecture slides 

provided by Morgan/Kauffman

Write-Through

� On data-write hit, could just update the block in 
cache
� But then cache and memory would be inconsistent

� Write through: also update memory

� But makes writes take longer
� e.g., if base CPI = 1, 10% of instructions are stores, 

write to memory takes 100 cycles
� Effective CPI = 1 + 0.1×100 = 11

� Solution: write buffer
� Holds data waiting to be written to memory

� CPU continues immediately
� Only stalls on write if write buffer is already full
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Write-Back

� Alternative: On data-write hit, just update 
the block in cache

� Keep track of whether each block is dirty

� When a dirty block is replaced

� Write it back to memory

� Can use a write buffer to allow replacing block 
to be read first
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Measuring Cache Performance

� Components of CPU time
� Program execution cycles

� Includes cache hit time

� Memory stall cycles
� Mainly from cache misses

� With simplifying assumptions:
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Average Access Time

� Hit time is also important for performance

� Average memory access time (AMAT)

� AMAT = Hit time + Miss rate × Miss penalty

� Example

� CPU with 1ns clock, hit time = 1 cycle, miss 
penalty = 20 cycles, I-cache miss rate = 5%

� AMAT = 1 + 0.05 × 20 = 2ns

� 2 cycles per instruction
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Replacement Policy

� Direct mapped: no choice
� Set associative

� Prefer non-valid entry, if there is one
� Otherwise, choose among entries in the set

� Least-recently used (LRU)
� Choose the one unused for the longest time

� Simple for 2-way, manageable for 4-way, too hard 
beyond that

� Random
� Gives approximately the same performance 

as LRU for high associativity
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Multilevel Caches

� Primary cache attached to CPU

� Small, but fast

� Level-2 cache services misses from 
primary cache

� Larger, slower, but still faster than main 
memory

� Main memory services L-2 cache misses

� Some high-end systems include L-3 cache
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Virtual Memory

� Use main memory as a “cache” for 
secondary (disk) storage
� Managed jointly by CPU hardware and the 

operating system (OS)

� Programs share main memory
� Each gets a private virtual address space 

holding its frequently used code and data
� Protected from other programs

� CPU and OS translate virtual addresses to 
physical addresses
� VM “block” is called a page
� VM translation “miss” is called a page fault
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Address Translation

� Fixed-size pages (e.g., 4K)
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Page Fault Penalty

� On page fault, the page must be fetched 
from disk

� Takes millions of clock cycles

� Handled by OS code

� Try to minimize page fault rate

� Fully associative placement

� Smart replacement algorithms
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Page Tables

� Stores placement information
� Array of page table entries, indexed by virtual 

page number

� Page table register in CPU points to page 
table in physical memory

� If page is present in memory
� PTE stores the physical page number

� Plus other status bits (referenced, dirty, …)

� If page is not present
� PTE can refer to location in swap space on 

disk
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Translation Using a Page Table
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Replacement and Writes

� To reduce page fault rate, prefer least-
recently used (LRU) replacement
� Reference bit (aka use bit) in PTE set to 1 on 

access to page
� Periodically cleared to 0 by OS
� A page with reference bit = 0 has not been 

used recently

� Disk writes take millions of cycles
� Block at once, not individual locations
� Write through is impractical
� Use write-back
� Dirty bit in PTE set when page is written
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Concluding Remarks

� Fast memories are small, large memories are 
slow
� We really want fast, large memories �

� Caching gives this illusion ☺

� Principle of locality
� Programs use a small part of their memory space 

frequently

� Memory hierarchy
� L1 cache ↔ L2 cache ↔ … ↔ DRAM memory

↔ disk

� Memory system design is critical for 
multiprocessors
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