
1

CS613 f11 – Chapter 5 — 21

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Compiler Optimization vs. Memory
Hierarchy Search

• Compiler tries to figure out memory hierarchy
optimizations

• New approach: “Auto-tuners” 1st run variations of
program on computer to find best combinations of
optimizations (blocking, padding, …) and algorithms,
then produce C code to be compiled for that
computer

• “Auto-tuner” targeted to numerical method
– E.g., PHiPAC (BLAS), Atlas (BLAS),

Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

CS613 f11 – Chapter 5 — 22

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]

2

CS613 f11 – Chapter 5 — 23

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could
compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron

Intel
Pentium M8

4

2

1

1 2 4 8

ro
w

 b
lo

ck
 s

iz
e

(r
)

column block size (c)

CS613 f11 – Chapter 5 — 24

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) Needs nonblocking cache; in
many CPUs3++

Compiler-controlled
prefetching

Many prefetch instructions;
AMD Opteron prefetches

data

2 instr., 3
data++

Hardware prefetching of

instructions and data

Software is a challenge;
some computers have

compiler option0+

Compiler techniques to reduce

cache misses

Widely used with write

through1+
Merging write buffer

Widely used2+
Critical word first and early

restart

Used in L2 of Opteron and

Niagara1+
Banked caches

Widely used3++
Nonblocking caches

Widely used1+–
Pipelined cache access

Used in Pentium 43+
Trace caches

Used in Pentium 41+
Way-predicting caches

Trivial; widely used0–+
Small and simple caches

Comment
HW cost/

complexity

Miss

rate

Mi

ss
pe

nal

ty

Band-

width

Hit

Time
Technique

3

CS613 f11 – Chapter 5 — 25

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Main Memory Background

• Performance of Main Memory:
– Latency: Cache Miss Penalty

» Access Time: time between request and word arrives

» Cycle Time: time between requests

– Bandwidth: I/O & Large Block Miss Penalty (L2)

• Main Memory is DRAM: Dynamic Random Access Memory
– Dynamic since needs to be refreshed periodically (8 ms, 1% time)

– Addresses divided into 2 halves (Memory as a 2D matrix):

» RAS or Row Access Strobe

» CAS or Column Access Strobe

• Cache uses SRAM: Static Random Access Memory
– No refresh (6 transistors/bit vs. 1 transistor

Size: DRAM/SRAM - 4-8,
Cost/Cycle time: SRAM/DRAM - 8-16

CS613 f11 – Chapter 5 — 26

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Main Memory Deep Background

• “Out-of-Core”, “In-Core,” “Core Dump”?

• “Core memory”?

• Non-volatile, magnetic

• Lost to 4 Kbit DRAM (today using 512Mbit DRAM)

• Access time 750 ns, cycle time 1500-3000 ns

4

CS613 f11 – Chapter 5 — 27

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

DRAM logical organization (4 Mbit)

• Square root of bits per RAS/CAS

Column Decoder

Sense Amps & I/O

Memory Array

(2,048 x 2,048)
A0…A10

…

11 D

Q

Word Line
Storage
Cell

CS613 f11 – Chapter 5 — 28

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Quest for DRAM Performance

1. Fast Page mode
– Add timing signals that allow repeated accesses to row buffer

without another row access time

– Such a buffer comes naturally, as each array will buffer 1024 to
2048 bits for each access

2. Synchronous DRAM (SDRAM)
– Add a clock signal to DRAM interface, so that the repeated

transfers would not bear overhead to synchronize with DRAM
controller

3. Double Data Rate (DDR SDRAM)
– Transfer data on both the rising edge and falling edge of the

DRAM clock signal ⇒⇒⇒⇒ doubling the peak data rate

– DDR2 lowers power by dropping the voltage from 2.5 to 1.8
volts + offers higher clock rates: up to 400 MHz

– DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz

• Improved Bandwidth, not Latency

5

CS613 f11 – Chapter 5 — 29

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

DRAM name based on Peak Chip Transfers / Sec
DIMM name based on Peak DIMM MBytes / Sec

PC1280012800DDR3-16001600800DDR3

PC1070010664DDR3-13331333666DDR3

PC85008528DDR3-10661066533DDR3

PC64006400DDR2-800800400DDR2

PC53005336DDR2-667667333DDR2

PC43004264DDR2-533533266DDR2

PC32003200DDR400400200DDR

PC24002400DDR300300150DDR

PC21002128DDR266266133DDR

DIMM

Name

Mbytes/s/

DIMM

DRAM

Name

M transfers

/ second

Clock Rate

(MHz)

Stan-

dard

x 2 x 8

F
a

s
te

s
t

fo
r

s
a
le

 4
/0

6
 (

$
1

2
5

/G
B

)

CS613 f11 – Chapter 5 — 30

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Need for Error Correction!

• Motivation:
– Failures/time proportional to number of bits!

– As DRAM cells shrink, more vulnerable

• Went through period in which failure rate was low
enough without error correction that people didn’t
do correction

– DRAM banks too large now

– Servers always corrected memory systems

• Basic idea: add redundancy through parity bits
– Common configuration: Random error correction

» SEC-DED (single error correct, double error detect)

» One example: 64 data bits + 8 parity bits (11% overhead)

– Really want to handle failures of physical components as well

» Organization is multiple DRAMs/DIMM, multiple DIMMs

» Want to recover from failed DRAM and failed DIMM!

» “Chip kill” handle failures width of single DRAM chip

6

CS613 f11 – Chapter 5 — 31

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Introduction to Virtual Machines

• VMs developed in late 1960s
– Remained important in mainframe computing over the years

– Largely ignored in single user computers of 1980s and 1990s

• Recently regained popularity due to
– increasing importance of isolation and security in modern

systems,

– failures in security and reliability of standard operating
systems,

– sharing of a single computer among many unrelated users,

– and the dramatic increases in raw speed of processors, which
makes the overhead of VMs more acceptable

CS613 f11 – Chapter 5 — 32

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

What is a Virtual Machine (VM)?

• Broadest definition includes all emulation
methods that provide a standard software
interface, such as the Java VM

• “(Operating) System Virtual Machines” provide a
complete system level environment at binary ISA

– Here assume ISAs always match the native hardware ISA

– E.g., IBM VM/370, VMware ESX Server, and Xen

• Present illusion that VM users have entire
computer to themselves, including a copy of OS

• Single computer runs multiple VMs, and can
support a multiple, different OSes

– On conventional platform, single OS “owns” all HW resources

– With a VM, multiple OSes all share HW resources

• Underlying HW platform is called the host, and
its resources are shared among the guest VMs

7

CS613 f11 – Chapter 5 — 33

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Virtual Machine Monitors (VMMs)

• Virtual machine monitor (VMM) or hypervisor is
software that supports VMs

• VMM determines how to map virtual resources to
physical resources

• Physical resource may be time-shared,
partitioned, or emulated in software

• VMM is much smaller than a traditional OS;
– isolation portion of a VMM is ≈≈≈≈ 10,000 lines of code

CS613 f11 – Chapter 5 — 34

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

VMM Overhead?

• Depends on the workload

• User-level processor-bound programs (e.g.,
SPEC) have zero-virtualization overhead

– Runs at native speeds since OS rarely invoked

• I/O-intensive workloads ⇒⇒⇒⇒ OS-intensive
⇒⇒⇒⇒ execute many system calls and privileged
instructions
⇒⇒⇒⇒ can result in high virtualization overhead

– For System VMs, goal of architecture and VMM is to run
almost all instructions directly on native hardware

• If I/O-intensive workload is also I/O-bound
⇒⇒⇒⇒ low processor utilization since waiting for I/O
⇒⇒⇒⇒ processor virtualization can be hidden
⇒⇒⇒⇒ low virtualization overhead

8

CS613 f11 – Chapter 5 — 35

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Other Uses of VMs

• Focus here on protection

• 2 Other commercially important uses of VMs

1. Managing Software
– VMs provide an abstraction that can run the complete SW

stack, even including old OSes like DOS

– Typical deployment: some VMs running legacy OSes, many
running current stable OS release, few testing next OS release

2. Managing Hardware
– VMs allow separate SW stacks to run independently yet share

HW, thereby consolidating number of servers

» Some run each application with compatible version of OS
on separate computers, as separation helps dependability

– Migrate running VM to a different computer

» Either to balance load or to evacuate from failing HW

CS613 f11 – Chapter 5 — 36

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Requirements of a Virtual Machine Monitor

• A VM Monitor
– Presents a SW interface to guest software,

– Isolates state of guests from each other, and

– Protects itself from guest software (including guest OSes)

• Guest software should behave on a VM exactly
as if running on the native HW

– Except for performance-related behavior or limitations of
fixed resources shared by multiple VMs

• Guest software should not be able to change
allocation of real system resources directly

• Hence, VMM must control ≈≈≈≈ everything even
though guest VM and OS currently running is
temporarily using them

– Access to privileged state, Address translation, I/O,
Exceptions and Interrupts, …

9

CS613 f11 – Chapter 5 — 37

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Requirements of a Virtual Machine Monitor

• VMM must be at higher privilege level than
guest VM, which generally run in user mode
⇒ Execution of privileged instructions handled by VMM

• E.g., Timer interrupt: VMM suspends currently
running guest VM, saves its state, handles
interrupt, determine which guest VM to run
next, and then load its state
– Guest VMs that rely on timer interrupt provided with virtual

timer and an emulated timer interrupt by VMM

• Requirements of system virtual machines are
≈≈≈≈ same as paged-virtual memory:

1. At least 2 processor modes, system and user

2. Privileged subset of instructions available only
in system mode, trap if executed in user mode
– All system resources controllable only via these instructions

CS613 f11 – Chapter 5 — 38

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

ISA Support for Virtual Machines

• If VMs are planned for during design of ISA, easy
to reduce instructions that must be executed by a
VMM and how long it takes to emulate them

– Since VMs have been considered for desktop/PC server apps
only recently, most ISAs were created without virtualization in
mind, including 80x86 and most RISC architectures

• VMM must ensure that guest system only interacts
with virtual resources ⇒⇒⇒⇒ conventional guest OS
runs as user mode program on top of VMM

– If guest OS attempts to access or modify information related to
HW resources via a privileged instruction--for example, reading
or writing the page table pointer--it will trap to the VMM

• If not, VMM must intercept instruction and support
a virtual version of the sensitive information as the
guest OS expects (examples soon)

10

CS613 f11 – Chapter 5 — 39

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Impact of VMs on Virtual Memory

• Virtualization of virtual memory if each guest OS in
every VM manages its own set of page tables?

• VMM separates real and physical memory
– Makes real memory a separate, intermediate level between virtual

memory and physical memory

– Some use the terms virtual memory, physical memory, and
machine memory to name the 3 levels

– Guest OS maps virtual memory to real memory via its page tables,
and VMM page tables map real memory to physical memory

• VMM maintains a shadow page table that maps
directly from the guest virtual address space to the
physical address space of HW

– Rather than pay extra level of indirection on every memory access

– VMM must trap any attempt by guest OS to change its page table
or to access the page table pointer

CS613 f11 – Chapter 5 — 40

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

ISA Support for VMs & Virtual Memory

• IBM 370 architecture added additional level of
indirection that is managed by the VMM

– Guest OS keeps its page tables as before, so the shadow
pages are unnecessary

• To virtualize software TLB, VMM manages the
real TLB and has a copy of the contents of the
TLB of each guest VM

– Any instruction that accesses the TLB must trap

– TLBs with Process ID tags support a mix of entries from
different VMs and the VMM, thereby avoiding flushing of the
TLB on a VM switch

11

CS613 f11 – Chapter 5 — 41

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Impact of I/O on Virtual Memory

• Most difficult part of virtualization
– Increasing number of I/O devices attached to the computer

– Increasing diversity of I/O device types

– Sharing of a real device among multiple VMs,

– Supporting the myriad of device drivers that are required,
especially if different guest OSes are supported on the same
VM system

• Give each VM generic versions of each type of I/O
device driver, and let VMM to handle real I/O

• Method for mapping virtual to physical I/O device
depends on the type of device:
– Disks partitioned by VMM to create virtual disks for guest VMs

– Network interfaces shared between VMs in short time slices,
and VMM tracks messages for virtual network addresses to
ensure that guest VMs only receive their messages

