Compiler Optimization vs. Memory
Hierarchy Search

+ Compiler tries to figure out memory hierarchy
optimizations

* New approach: “Auto-tuners” 1st run variations of
program on computer to find best combinations of
optimizations (blocking, padding, ...) and algorithms,
then produce C code to be compiled for that
computer

+ “Auto-tuner” targeted to numerical method

— E.g., PHIPAC (BLAS), Atlas (BLAS),
Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 21

Sparse Matrix — Search for Blocking

for finite element problem [Im, Yelick, Vuduc, 2005]
900 MHz [tanium 2, Intel C v8: ref=275 Mflop/s

1120 Miflop/s
1080

1030
980
930

r 1880
‘ - 1830
4.07 . - 1780

1730
1680
1630
1580
530
480
430
380
330
280 Mflop/s

Best: 4x2

row block size (r}

Reference
Adapted from

(Morgan Kau column block size (C) ipter 5 — 22

Best Sparse Blocking for 8 Computers

oo

row block size (r)
N

[\S

Sun Ultra 2
Intel ?
. Sun Ultra 3,
Pentium M AMD Opteron
IBM Power 4, Intel/HP IBM
Intel/HP lItanium | ltanium 2 Power 3
1 2 4 8

compiler know?

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

column block size (c)
 All possible column block sizes selected for 8 computers; How could

CS613 f11 — Chapter 5 — 23

. Hit Band-
Technique Time width
Small and simple caches +
Way-predicting caches +
Trace caches

+
Pipelined cache access _ +
Nonblocking caches +
Banked caches +

Critical word first and early
restart

Merging write buffer

Compiler techniques to reduce
cache misses

Hardware prefetching of
instructions and data

Compiler-controlled
prefetching

nal
ty

Miss HW cost/
rate complexity

2instr., 3

+

0

data

Comment

Trivial; widely used
Used in Pentium 4
Used in Pentium 4
Widely used

Widely used

Used in L2 of Opteron and
Niagara

Widely used

Widely used with write
through

Software is a challenge;
some computers have
compiler option

Many prefetch instructions;
AMD Opteron prefetches
data

Needs nonblocking cache; in
many CPUs

Ny

Main Memory Background

» Performance of Main Memory:
— Latency: Cache Miss Penalty
» Access Time: time between request and word arrives
» Cycle Time: time between requests
— Bandwidth: I/O & Large Block Miss Penalty (L2)

* Main Memory is DRAM: Dynamic Random Access Memory
— Dynamic since needs to be refreshed periodically (8 ms, 1% time)
— Addresses divided into 2 halves (Memory as a 2D matrix):
» RAS or Row Access Strobe
» CAS or Column Access Strobe

» Cache uses SRAM: Static Random Access Memory

— No refresh (6 transistors/bit vs. 1 transistor
Size: DRAM/SRAM - 4-8,
Cost/Cycle time: SRAM/DRAM - 8-16

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 25

Main Memory Deep Background

+ “Out-of-Core”, “In-Core,” “Core Dump”?

+ “Core memory”?

* Non-volatile, magnetic

* Lost to 4 Kbit DRAM (today using 512Mbit DRAM)
» Access time 750 ns, cycle time 1500-3000 ns

Adapted from Patt&Tson and Hennessey
(Morgan Kauffman Pubs) CS613 11 — Chapter 5 — 26

w

DRAM logical organization (4 Mbit)

_| Column Decoder =
ces =
11 Sense Amps & 1/0 Sl D
et (=]
i z 3k
A0..A10 |@ &1, [Memory Array E —Q
| % [= (2,048 x 2,048) — |
|-, :
. age
T Word Line Eecﬁ
» Square root of bits per RAS/CAS
Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 27

Quest for DRAM Performance

1.

Fast Page mode

— Add timing signals that allow repeated accesses to row buffer
without another row access time

— Such a buffer comes naturally, as each array will buffer 1024 to
2048 bits for each access

Synchronous DRAM (SDRAM)

— Add a clock signal to DRAM interface, so that the repeated
transfelfs would not bear overhead to synchronize with DRAM
controller

Double Data Rate (DDR SDRAM)

Transfer data on both the rising edge and falling edge of the
DRAM clock signal = doubling the peak data rate

— DDR2 lowers ﬁower by dropping the voltage from 2.5 to 1.8
volts + offers higher clock rates: up to 400 MHz

— DDR3 drops to 1.5 volts + higher clock rates: up to 800 MHz
Improved Bandwidth, not Latency

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 11 — Chapter 5 — 28

DRAM name based on Peak Chip Transfers / Sec
DIMM name based on Peak DIMM MBytes / Sec

Stan- Clock Rate M transfers DRAM Mbytes/s/ DIMM
dard (MHz) / seeom@___ —~Name DI

g DDR (133) (266) DDR266 (2128\ PC2100
&| DDR 150 300 DDR300 2400 PC2400
% DDR 200 400 DDR400 3200 PC3200
% DDR2 266 533 DDR2-533 4264 PC4300
? DDR2 333 667 DDR2-667 5336 PC5300
"E DDR2 400 800 DDR2-800 6400 PC6400
é DDR3 533 1066 DDR3-1066 8528 PC8500
- DDR3 666 1333 DDR3-1333 10664 PC10700

DDRS3 L 800) 1600/ DDR3-1600 12800, PC12800

> —7 N,
Adapted from Patterson and Hennégsg X 8

(Morgan Kauffman Pubs)

CS613 f11 — Chapter 5 — 29

Need for Error Correction!

* Motivation:

— Failures/time proportional to number of bits!

— As DRAM cells shrink, more vulnerable

+ Went through period in which failure rate was low
enough without error correction that people didn’t
do correction

— DRAM banks too large how
— Servers always corrected memory systems

+ Basic idea: add redundancy through parity bits
— Common configuration: Random error correction
» SEC-DED (single error correct, double error detect)
» One example: 64 data bits + 8 parity bits (11% overhead)
— Really want to handle failures of physical components as well
» Organization is multiple DRAMs/DIMM, multiple DIMMs
» Want to recover from failed DRAM and failed DIMM!
» “Chip kill” handle failures width of single DRAM chip

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

CS613 f11 — Chapter 5 — 30

Introduction to Virtual Machines
* VMs developed in late 1960s

— Remained important in mainframe computing over the years
— Largely ignored in single user computers of 1980s and 1990s

* Recently regained popularity due to

— increasing importance of isolation and security in modern
systems,

— failures in security and reliability of standard operating
systems,

— sharing of a single computer among many unrelated users,

— and the dramatic increases in raw speed of processors, which
makes the overhead of VMs more acceptable

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 31

What is a Virtual Machine (VM)?

* Broadest definition includes all emulation
methods that provide a standard software
interface, such as the Java VM

* “(Operating) ” provide a
complete system level environment at binary ISA

— Here assume ISAs always match the native hardware ISA
— E.g., IBM VM/370, VMware ESX Server, and Xen

* Present illusion that VM users have entire
computer to themselves, including a copy of OS

+ Single computer runs multiple VMs, and can
support a multiple, different OSes
— On conventional platform, single OS “owns” all HW resources
— With a VM, multiple OSes all share HW resources

* Underlying HW platform is called the host, and
its resources are shared among the guest VMs

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 11 — Chapter 5 — 32

Virtual Machine Monitors (VMMs)

+ Virtual machine monitor (VMM) or hypervisor is
software that supports VMs

* VMM determines how to map virtual resources to
physical resources

+ Physical resource may be time-shared,
partitioned, or emulated in software

* VMM is much smaller than a traditional OS;
— isolation portion of a VMM is = 10,000 lines of code

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 33

VMM Overhead?

» Depends on the workload

* User-level processor-bound programs (e.g.,
SPEC) have zero-virtualization overhead
— Runs at native speeds since OS rarely invoked

* 1/O-intensive workloads = OS-intensive
= execute many system calls and privileged
instructions
= can result in high virtualization overhead
— For System VMs, goal of architecture and VMM is to run
almost all instructions directly on native hardware
« If I/0-intensive workload is also I/O-bound
= low processor utilization since waiting for 1/0
= processor virtualization can be hidden
= low virtualization overhead

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 34

Other Uses of VMs

* Focus here on protection
+ 2 Other commercially important uses of VMs

1. Managing Software

— VMs provide an abstraction that can run the complete SW
stack, even including old OSes like DOS

— Typical deployment: some VMs running legacy OSes, many
running current stable OS release, few testing next OS release
2. Managing Hardware

— VMs allow separate SW stacks to run independently yet share
HW, thereby consolidating number of servers

» Some run each application with compatible version of OS
onh separate computers, as separation helps dependability

— Migrate running VM to a different computer
» Either to balance load or to evacuate from failing HW

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 35

Requirements of a Virtual Machine Monitor
+ A VM Monitor

— Presents a SW interface to guest software,
— Isolates state of guests from each other, and
— Protects itself from guest software (including guest OSes)

» Guest software should behave on a VM exactly
as if running on the native HW
— Except for performance-related behavior or limitations of
fixed resources shared by multiple VMs
+ Guest software should not be able to change
allocation of real system resources directly

* Hence, VMM must control = everything even
though guest VM and OS currently running is
temporarily using them

— Access to privileged state, Address translation, 1/O,
Exceptions and Interrupts, ...

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 36

Requirements of a Virtual Machine Monitor

* VMM must be at higher privilege level than
guest VM, which generally run in user mode
= Execution of privileged instructions handled by VMM

+ E.g., Timer interrupt: VMM suspends currently
running guest VM, saves its state, handles
interrupt, determine which guest VM to run
next, and then load its state
— Guest VMs that rely on timer interrupt provided with virtual

timer and an emulated timer interrupt by VMM

+ Requirements of system virtual machines are

~ same as paged-virtual memory:

1. At least 2 processor modes, system and user
Privileged subset of instructions available only
in system mode, trap if executed in user mode

— All system resources controllable only via these instructions

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 37

ISA Support for Virtual Machines

+ If VMs are planned for during design of ISA, easy
to reduce instructions that must be executed by a
VMM and how long it takes to emulate them

— Since VMs have been considered for desktop/PC server apps
only recentgl, most ISAs were created without virtualization in
mind, including 80x86 and most RISC architectures

+ VMM must ensure that guest system only interacts
with virtual resources = conventional guest OS
runs as user mode program on top of VMM

—If ‘(hqluest OS attempts to access or modify information related to
HW resources via a privileged instruction--for examBIIe, reading
or writing the page table pointer--it will trap to the VMM
+ If not, VMM must intercept instruction and support
a virtual version of the sensitive information as the
guest OS expects (examples soon)

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 38

Impact of VMs on Virtual Memory

« Virtualization of virtual memory if each guest OS in
every VM manages its own set of page tables?

+ VMM separates real and physical memory

— Makes real memory a separate, intermediate level between virtual
memory and physical memory

— Some use the terms virtual memory, physical memory, and
machine memory to name the 3 levels

— Guest OS maps virtual memory to real memory via its page tables,
and VMM page tables map real memory to physical memory
+ VMM maintains a shadow page table that maps
directly from the guest virtual address space to the
physical address space of HW
— Rather than pay extra level of indirection on every memory access

— VMM must trap any attempt by guest OS to change its page table
or to access the page table pointer

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 f11 — Chapter 5 — 39

ISA Support for VMs & Virtual Memory

« IBM 370 architecture added additional level of
indirection that is managed by the VMM
— Guest OS keeps its page tables as before, so the shadow
pages are unnecessary
» To virtualize software TLB, VMM manages the
real TLB and has a copy of the contents of the
TLB of each guest VM
— Any instruction that accesses the TLB must trap

— TLBs with Process ID tags support a mix of entries from
different VMs and the VMM, thereby avoiding flushing of the
TLB on a VM switch

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 11 — Chapter 5 — 40

10

Impact of /0 on Virtual Memory

* Most difficult part of virtualization

Increasing number of /O devices attached to the computer
Increasing diversity of 1/0 device types
Sharing of a real device among multiple VMs,

Supporting the myriad of device drivers that are required,
eﬁkecially if different guest OSes are supported on the same
VM system

* Give each VM generic versions of each tme of /0

device driver, and let VMM to handle rea

o)

* Method for mapping virtual to physical I/0 device
depends on the type of device:

Disks partitioned by VMM to create virtual disks for guest VMs

Network interfaces shared between VMs in short time slices,
and VMM tracks messages for virtual network addresses to
ensure that guest VMs only receive their messages

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

CS613 f11 — Chapter 5 — 41

11

