
1

CS613 s12 – Chapter 4 — 1

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.

V
A

X
-1

1
/7

8
0

)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint) 3X

Motivation for Multiprocessors

CS613 s12 – Chapter 4 — 2

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Other Factors ⇒⇒⇒⇒ Multiprocessors

• Growth in data-intensive applications
– Data bases, file servers, …

• Improved understanding in how to use
multiprocessors effectively

– Especially server where significant natural TLP

• Advantage of leveraging design investment
by replication

– Rather than unique design

2

CS613 s12 – Chapter 4 — 3

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Flynn’s Taxonomy

• Flynn classified by data and control streams in 1966

• SIMD ⇒⇒⇒⇒ Data Level Parallelism

• MIMD ⇒⇒⇒⇒ Thread Level Parallelism

Multiple Instruction Multiple
Data MIMD

(Dist processors, clusters)

Multiple Instruction Single
Data (MISD)

(????)

Single Instruction Multiple
Data SIMD

(Vector processors, GPUs)

Single Instruction Single
Data (SISD)

(Classic Uniprocessor)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

CS613 s12 – Chapter 4 — 4

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Centralized vs. Distributed Memory

P1

Interconnection network

Pn

Mem Mem

P1

cache

Interconnection network

P n

Mem Mem

Centralized Memory Distributed Memory
• Dozens of processors, maybe

hundreds of cores
• Small enough to share a centralized

memory

• Memory bandwidth limits scale

• Thousands of processors

• Memory distributed among processors

cache cache cache

3

CS613 s12 – Chapter 4 — 5

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Centralized Memory Multiprocessor

• Also called symmetric multiprocessors (SMPs)

• Large caches help single memory satisfy
memory demands of small number of
processors

• Can scale to a few dozen processors by using
a switch and by using many memory banks

• Although scaling beyond that is technically
possible, it becomes less attractive as the
number of processors sharing centralized
memory increases

CS613 s12 – Chapter 4 — 6

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Distributed Memory Multiprocessor

• Pro: Cost-effective way to scale
memory bandwidth

• If most accesses are to local memory

• Pro: Reduces latency of local memory
accesses

• Con: Communicating data between
processors more complex

• Con: Must change software to take
advantage of increased memory BW

4

CS613 s12 – Chapter 4 — 7

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

2 Models for Communication and
Memory Architecture

1. Communication occurs by explicitly passing
messages among the processors:
message-passing multiprocessors

2. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors either

• UMA (Uniform Memory Access time) for shared
address, centralized memory MP

• NUMA (Non Uniform Memory Access time
multiprocessor) for shared address, distributed
memory MP

• Note that either Centralized or Distributed Memory
MPs can use either model, but generally:
– Shared memory ���� ���� Centralized

– Message-passing ���� ���� Distributed

CS613 s12 – Chapter 4 — 8

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

2 Challenges of Parallel Processing

(1) the speedup we can achieve through
parallel processing is highly dependent
on the fraction of the program that is
“inherently sequential”
– Suppose we want to get 80X speedup from 100

processors. What fraction of the original program can
be sequential?

5

CS613 s12 – Chapter 4 — 9

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Amdahl’s Law Answers

()

()

()

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100

Fraction
 Fraction 1

1
 08

Speedup

Fraction
 Fraction 1

1
 Speedup

parallel

parallelparallel

parallel

parallel

parallel

parallel

parallel

parallel

enhanced

overall

==

×−×=

=+−×

+−

=

+−

=

CS613 s12 – Chapter 4 — 10

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

2 Challenges of Parallel Processing

(2) long latency to remote memory can ruin
performance gains

• Suppose 32 CPU MP, 2GHz, 200 ns remote memory, all local
accesses hit memory hierarchy and base CPI is 0.5.
(Remote access = 200/0.5 = 400 clock cycles.)

– What is performance impact if 0.2% instructions involve remote
access?

– CPI = Base CPI +
Remote request rate
x Remote request cost

– CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 = 1.3

– No communication is 1.3/0.5 or 2.6 faster than 0.2% instructions
involve local access

6

CS613 s12 – Chapter 4 — 11

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Challenges of Parallel Processing:
How do we resolve them?

1. Application parallelism ⇒⇒⇒⇒ primarily via
new algorithms that have better parallel
performance

2. Long remote latency impact ⇒⇒⇒⇒ both by
architect and by the programmer

– For example, reduce frequency of remote
accesses either by

» Caching shared data (HW)

» Restructuring the data layout to make
more accesses local (SW)

CS613 s12 – Chapter 4 — 12

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Centralized Shared-Memory Architectures

• Caches both

– Private data -- used by a single processor

– Shared data -- used by multiple processors

• Caching shared data
⇒⇒⇒⇒ reduces latency to shared data, memory
bandwidth for shared data,
and interconnect bandwidth
⇒⇒⇒⇒ cache coherence problem

7

CS613 s12 – Chapter 4 — 13

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Example Cache Coherence Problem

– Processors see different values for u after event 3

– With write back caches, value written back to memory depends on
happenstance of which cache flushes or writes back value when

» Processes accessing main memory may see very stale value

– Unacceptable for programming, and its frequent!

I/O devices

Memory

P1 P2 P3

5

u = ?

4

u = ?

u:5

1

u :5

2

u :5

3

u= 7

CS613 s12 – Chapter 4 — 14

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

P

Disk

Memory

L2

L1

100:34

100:35

100:67

Intuitive Memory Model

• Too vague and simplistic; 2 issues

1. Coherence defines values returned by a read

2. Consistency determines when a written value will
be returned by a read

• Coherence defines behavior to same location,
Consistency defines behavior to other locations

• Reading an address
should return the last
value written to that
address
– Easy in uniprocessors,

except for I/O

8

CS613 s12 – Chapter 4 — 15

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Defining Coherent Memory System

1. Preserve Program Order: A read by processor P to
location X that follows a write by P to X, with no writes of
X by another processor occurring between the write and
the read by P, always returns the value written by P

2. Coherent view of memory: Read by a processor to
location X that follows a write by another processor to X
returns the written value if the read and write are
sufficiently separated in time and no other writes to X
occur between the two accesses

3. Write serialization: 2 writes to same location by any 2
processors are seen in the same order by all processors

– For example, if the values 1 and then 2 are written to a
location, processors can never read the value of the location
as 2 and then later read it as 1

CS613 s12 – Chapter 4 — 16

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Write Consistency

• For now assume

1. A write does not complete (and allow the next
write to occur) until all processors have seen the
effect of that write

2. The processor does not change the order of any
write with respect to any other memory access

⇒⇒⇒⇒ if a processor writes location A followed by
location B, any processor that sees the new
value of B must also see the new value of A

• These restrictions allow the processor to reorder
reads, but forces the processor to finish writes in
program order

9

CS613 s12 – Chapter 4 — 17

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Basic Schemes for Enforcing Coherence

• Program on multiple processors will normally have
copies of the same data in several caches

• Rather than trying to avoid sharing in SW,
SMPs use a HW protocol to maintain coherent caches

– Migration and Replication key to performance of shared data

• Migration - data can be moved to a local cache and
used there in a transparent fashion

– Reduces both latency to access shared data that is allocated
remotely and bandwidth demand on the shared memory

• Replication – for shared data being simultaneously
read, since caches make a copy of data in local cache

– Reduces both latency of access and contention for read shared data

CS613 s12 – Chapter 4 — 18

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

2 Classes of Cache Coherence Protocols

1. Directory based — Sharing status of a block of
physical memory is kept in just one location,
the directory

2. Snooping — Every cache with a copy of data
also has a copy of sharing status of block, but
no centralized state is kept

• All caches are accessible via some broadcast medium
(a bus or switch)

• All cache controllers monitor or snoop on the medium
to determine whether or not they have a copy of a
block that is requested on a bus or switch access

10

CS613 s12 – Chapter 4 — 19

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Snoopy Cache-Coherence Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or switch)

– relevant transaction if for a block it contains

– take action to ensure coherence

» invalidate, update, or supply value

– depends on state of the block and the protocol

• Either get exclusive access before write via write
invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

CS613 s12 – Chapter 4 — 20

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

Example: Write-thru Invalidate

• Must invalidate before step 3

• Write update uses more broadcast medium BW
⇒⇒⇒⇒ all recent MPUs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

