

- CPI ≥ 1 if issue only 1 instruction every clock cycle
- Multiple-issue processors come in 3 flavors:
 - 1. statically-scheduled superscalar processors,
 - 2. dynamically-scheduled superscalar processors, and
 - 3. VLIW (very long instruction word) processors
- 2 types of superscalar processors issue varying numbers of instructions per clock
 - use in-order execution if they are statically scheduled, or
 - out-of-order execution if they are dynamically scheduled
- VLIW processors, in contrast, issue a fixed number of instructions formatted either as one large instruction or as a fixed instruction packet with the parallelism among instructions explicitly indicated by the instruction (Intel/HP Itanium)

CS613 s12 - ILP2 - 9

Adapted from Patterson and Hennessey (Morgan Kauffman Pubs)

Loop	Unrollin	g in VLIW			
Memory reference 1	<i>Memory</i> <i>reference 2</i>	FP operation 1	FP op. 2	Int. op/ branch	Clock
L.D F <u>0,0(</u> R1)	L.D F6,-8(R1)				-
L.D F10,-16(R1)	L.D F14,-24(R1)				2
L.D F18,-32(R1)	L.D F22,-40(R1)	ADD.D F4,F0,F2	ADD.D F	F8,F6,F2	:
L.D F26,-48(R1)		ADD.D F12,F10,F2	ADD.D F	F16,F14,F2	4
		ADD.D F20,F18,F2	ADD.D F	F24,F22,F2	!
S.D 0(R1),F4	S.D -8(R1),F8	ADD.D F28,F26,F2			(
S.D -16(R1),F12	S.D -24(R1),F16				7
S.D -32(R1),F20	S.D -40(R1),F24			DSUBUI R1	,R1,#48 8
S.D -0(R1),F28				BNEZ R1,LC	DOP 9
Unrolled 7 t	imes to avoid	delays			
7 results in	9 clocks, or 1.	.3 clocks per iter	ration (⁻	1.8X)	
Average: 2.5	5 ops per cloc	k, 50% efficienc	v		
Note: Need	more register	s in VLIW (15 vs	. 6 in S	S)	
organ Kauffman Pubs)				CS613 s1	12 – ILP2 — 1

 Multithreading: multiple threads to share the functional units of 1 processor via overlapping

- processor must duplicate independent state of each thread e.g., a separate copy of register file, a separate PC, and for running independent programs, a separate page table
- memory shared through the virtual memory mechanisms, which already support multiple processes
- HW for fast thread switch; much faster than full process switch ≈ 100s to 1000s of clocks
- When switch?
 - Alternate instruction per thread (fine grain)
 - When a thread is stalled, perhaps for a cache miss, another thread can be executed (coarse grain)

Adapted from Patterson and Hennessey (Morgan Kauffman Pubs)

CS613 s12 - ILP2 - 15

