Speculation

» Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct
— Speculation = fetch, issue, and execute instructions as if

branch predictions were always correct
— Dynamic scheduling = only fetches and issues
instructions

« Essentially a data flow execution model:
Operations execute as soon as their operands are
available

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12-1LP2 —1

Speculation

+ 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12 - ILP2 — 2




Adding Speculation to Tomasulo

* Must separate execution from allowing
instruction to finish or “commit”

» This additional step called instruction commit

* When an instruction is no longer speculative,
allow it to update the register file or memory

* Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

» This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613s12-1LP2 —3

| Reorder Buffer (ROB)

| * In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

» With speculation, the register file is not updated
until the instruction commits
— (we know definitively that the instruction should execute)

» Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

— ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613s12 - ILP2 — 4

N



| Reorder Buffer Entry

| « Each entry in the ROB contains four fields:

1. Instruction type
* a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)
2. Destination

* Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value

« Value of instruction result until the instruction commits

4. Ready

* Indicates that instruction has completed execution, and the
value is ready

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613s12-1LP2 —5

| Reorder Buffer operation

* |[Holds instructions in FIFO order, exactly as issued

* [When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

* Instructions commit =values at head of ROB placed in
registers | ——

+ As aresult, easy to undo Reorder
speculated instructions Buffer
on mispredicted branches
or on exceptions

Commit path

|Res Stations  |Res Stations|
EP_Addel

Adapted from Patterson and Hennessey I’
(Morgan Kauffman Pubs) CS613 s12-ILP2 —6

W



| Recall: 4 Steps of Speculative Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs)

CS613 s12-1ILP2 —7

Tomasulo With Reorder buffer:

ueue

Reorder Buffer

LD FO,10(R2)

Registers To
Memory

Dest Dest from
Memory

L1 |
)esf*
Reservation 1 |10+4R
Stations

Newest

Oldest

CS613s12—-ILP2—8




| Getting CPI below 1

| « CPI 21 if issue only 1 instruction every clock cycle

* Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

« 2 types of superscalar processors issue varying
numbers of instructions per clock
— use in-order execution if they are statically scheduled, or
— out-of-order execution if they are dynamically scheduled

* VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the

parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) CS613s12-1LP2 —9

| VLIW: Very Large Instruction Word

J Each “instruction” has explicit coding for multiple
operations
— In 1A-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

» Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) CS613 s12-1LP2 —10




| Recall: Unrolled Loop that Minimizes Stalls for Scalar

1 Loop: L.D F0,0(R1) L.D to ADD.D: 1 Cycle
2 L.D  F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1l),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1, #32

13 BNEZ R1, LOOP

14 S.D 8(R1) ,F1l6 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12-ILP2 — 11

| Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2  operation 1 op.2 branch

L.DFQ,0(R1)  L.D F6,-8(R1) 1
L.D F10,-16(R1) L. n 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,FO,F2  ADD.D F8,F6,F2 3
L.D F26,-48(R1) D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.DO(R1),F4  S.D-8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZR1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency
Adaptl(;ldg%gn:PNeed re reygisters in VLIW (15 vs. 6 in SS)

atterson an lennesse!
(Morgan Kauffman Pubs) CS613 12— ILP2 — 12




| Performance beyond single thread ILP

* There can be much higher natural
arallelism in some applications
e.g., Database or Scientific codes)

» Explicit Thread Level Parallelism or Data
Level Parallelism

« Thread: process with own instructions and
data

— thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute
- Data Level Parallelism: Perform identical
operations on data, and lots of data

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12 - I1LP2 — 13

| Thread Level Parallelism (TLP)

* ILP exploits implicit parallel operations
within a loop or straight-line code
segment

« TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

- Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many
programs
2. Execution time of multi-threaded programs
* TLP could be more cost-effective to
exploit than ILP

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12 - ILP2 — 14




| Mulithreaded Execution

* Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process
switch = 100s to 1000s of clocks

« When switch?

— Alternate instruction per thread (fine grain)

— When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) CS613 s12-ILP2 — 15

| Fine-Grained Multithreading

| + Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

» Usually done in a round-robin fashion, skipping
any stalled threads

+ CPU must be able to switch threads every clock

+ Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs) CS613 s12-ILP2 — 16




| Course-Grained Multithreading

| » Switches threads only on costly stalls, such as L2
cache misses

+ Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other
tlgrclelads issued only when the thread encounters a costly
sta

» Disadvantage is hard to overcome throughput
Iosstes from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can
complete

» Because of this start-up overhead, coarse-tgrained
multithreading is better for r_educm_ﬁ penalty of
high cost stalls, where pipeline refill << stall time

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12-ILP2 — 17

| Limits to ILP

| * Most techniques for increasing performance increase power
consumption

The key question is whether a technique is energy efficient:
does it increase power consumption faster than it increases
performance?

+ Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained
performance

* Number of transistors switching = f(peak issue rate), and
performance = f( sustained rate),
growing gap between peak and sustained performance
= increasing energy per unit of performance

Adapted from Patterson and Hennessey
(Morgan Kauffman Pubs) CS613 s12-1I1LP2 — 18




