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Speculation

• Greater ILP: Overcome control dependence by 
hardware speculating on outcome of branches 
and executing program as if guesses were correct

– Speculation ⇒⇒⇒⇒ fetch, issue, and execute instructions as if 
branch predictions were always correct 

– Dynamic scheduling ⇒⇒⇒⇒ only fetches and issues
instructions

• Essentially a data flow execution model: 
Operations execute as soon as their operands are 
available
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Speculation

• 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which 
instructions to execute 

2. Speculation to allow execution of instructions 
before control dependences are resolved 
+ ability to undo effects of incorrectly speculated sequence 

3. Dynamic scheduling to deal with scheduling of 
different combinations of basic blocks 
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Adding Speculation to Tomasulo

• Must separate execution from allowing 
instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative, 
allow it to update the register file or memory 

• Requires additional set of buffers to hold results 
of instructions that have finished execution but 
have not committed

• This reorder buffer (ROB) is also used to pass 
results among instructions that may be 
speculated
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Reorder Buffer (ROB)

• In Tomasulo’s algorithm, once an instruction 
writes its result, any subsequently issued 
instructions will find result in the register file

• With speculation, the register file is not updated 
until the instruction commits 

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval 
between completion of instruction execution and 
instruction commit

– ROB is a source of operands for instructions, just as 
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS
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Reorder Buffer Entry

• Each entry in the ROB contains four fields: 

1. Instruction type 
• a branch (has no destination result), a store (has a memory 

address destination), or a register operation (ALU operation 
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or 

memory address (for stores) 
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the 

value is ready
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Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution 

complete & commit ⇒⇒⇒⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒⇒⇒⇒values at head of ROB placed in 
registers

• As a result, easy to undo 
speculated instructions 
on mispredicted branches 
or on exceptions

Reorder
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Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path
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Recall: 4 Steps of Speculative Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr & 
send operands & reorder buffer no. for destination (this stage 
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch 
CDB for result; when both in reservation station, execute; 
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update 
register with result (or store to memory) and remove instr from 
reorder buffer. Mispredicted branch flushes reorder buffer 
(sometimes called “graduation”)
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Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation 
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest
Dest
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1 10+R21 10+R2
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Getting CPI below 1

• CPI ≥ 1 if issue only 1 instruction every clock cycle 

• Multiple-issue processors come in 3 flavors: 
1. statically-scheduled superscalar processors,

2. dynamically-scheduled superscalar processors, and 

3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying 
numbers of instructions per clock 
– use in-order execution if they are statically scheduled, or 

– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number 
of instructions formatted either as one large 
instruction or as a fixed instruction packet with the 
parallelism among instructions explicitly indicated 
by the instruction (Intel/HP Itanium)
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VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple 
operations

– In IA-64, grouping called a “packet”

– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations

– By definition, all the operations the compiler puts in the long 
instruction word are independent => execute in parallel

– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several branches
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Recall: Unrolled Loop that Minimizes Stalls for Scalar

1 Loop: L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle

ADD.D to S.D: 2 Cycles
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 7

S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI  R1,R1,#48 8

S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)
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Performance beyond single thread ILP

• There can be much higher natural 
parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data 
Level Parallelism

• Thread: process with own instructions and 
data

– thread may be a process part of a parallel program of 
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical 
operations on data, and lots of data
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Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations 
within a loop or straight-line code 
segment

• TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel

• Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 

2. Execution time of multi-threaded programs

• TLP could be more cost-effective to 
exploit than ILP
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Mulithreaded Execution

• Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping

– processor must duplicate independent state of each thread 
e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch ≈≈≈≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)

– When a thread is stalled, perhaps for a cache miss, another 
thread can be executed (coarse grain)
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Fine-Grained Multithreading

• Switches between threads on each instruction, 
causing the execution of multiples threads to be 
interleaved 

• Usually done in a round-robin fashion, skipping 
any stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long 
stalls, since instructions from other threads 
executed when one thread stalls 

• Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads



9

CS613 s12 – ILP2 — 17

Adapted from Patterson and Hennessey 

(Morgan Kauffman Pubs)

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2 
cache misses

• Advantages 
– Relieves need to have very fast thread-switching

– Doesn’t slow down thread, since instructions from other 
threads issued only when the thread encounters a costly 
stall

• Disadvantage is hard to overcome throughput 
losses from shorter stalls, due to pipeline start-up 
costs

– Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

– New thread must fill pipeline before instructions can 
complete 

• Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of 
high cost stalls, where pipeline refill << stall time
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Limits to ILP

• Most techniques for increasing performance increase power 
consumption 

• The key question is whether a technique is energy efficient: 
does it increase power consumption faster than it increases 
performance? 

• Multiple issue processors techniques all are energy 
inefficient:

1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained 
performance

• Number of transistors switching = f(peak issue rate), and 
performance = f( sustained rate), 
growing gap between peak and sustained performance 
⇒⇒⇒⇒ increasing energy per unit of performance


