
1

CS613 s12 – ILP2 — 1

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Speculation

• Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct

– Speculation ⇒⇒⇒⇒ fetch, issue, and execute instructions as if
branch predictions were always correct

– Dynamic scheduling ⇒⇒⇒⇒ only fetches and issues
instructions

• Essentially a data flow execution model:
Operations execute as soon as their operands are
available

CS613 s12 – ILP2 — 2

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Speculation

• 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2

CS613 s12 – ILP2 — 3

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Adding Speculation to Tomasulo

• Must separate execution from allowing
instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative,
allow it to update the register file or memory

• Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

• This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

CS613 s12 – ILP2 — 4

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reorder Buffer (ROB)

• In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

• With speculation, the register file is not updated
until the instruction commits

– (we know definitively that the instruction should execute)

• Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

– ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

3

CS613 s12 – ILP2 — 5

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reorder Buffer Entry

• Each entry in the ROB contains four fields:

1. Instruction type
• a branch (has no destination result), a store (has a memory

address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
• Register number (for loads and ALU operations) or

memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

CS613 s12 – ILP2 — 6

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution

complete & commit ⇒⇒⇒⇒ more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit ⇒⇒⇒⇒values at head of ROB placed in
registers

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder

BufferFP

Op

Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

4

CS613 s12 – ILP2 — 7

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Recall: 4 Steps of Speculative Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

CS613 s12 – ILP2 — 8

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo With Reorder buffer:

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

FP Op
Queue

ROB7

ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0F0 LD F0,10(R2)LD F0,10(R2) NN

Done?

Dest
Dest

Oldest

Newest

from
Memory

1 10+R21 10+R2
Dest

Reorder Buffer

Registers

5

CS613 s12 – ILP2 — 9

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Getting CPI below 1

• CPI ≥ 1 if issue only 1 instruction every clock cycle

• Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,

2. dynamically-scheduled superscalar processors, and

3. VLIW (very long instruction word) processors

• 2 types of superscalar processors issue varying
numbers of instructions per clock
– use in-order execution if they are statically scheduled, or

– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the
parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)

CS613 s12 – ILP2 — 10

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”

– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations

– By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several branches

6

CS613 s12 – ILP2 — 11

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Recall: Unrolled Loop that Minimizes Stalls for Scalar

1 Loop: L.D F0,0(R1)

2 L.D F6,-8(R1)

3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

L.D to ADD.D: 1 Cycle

ADD.D to S.D: 2 Cycles

CS613 s12 – ILP2 — 12

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 7

S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8

S.D -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

7

CS613 s12 – ILP2 — 13

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Performance beyond single thread ILP

• There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data
Level Parallelism

• Thread: process with own instructions and
data

– thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

CS613 s12 – ILP2 — 14

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations
within a loop or straight-line code
segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs

2. Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

8

CS613 s12 – ILP2 — 15

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Mulithreaded Execution

• Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch ≈≈≈≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)

– When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

CS613 s12 – ILP2 — 16

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Fine-Grained Multithreading

• Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

• Usually done in a round-robin fashion, skipping
any stalled threads

• CPU must be able to switch threads every clock

• Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

• Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

9

CS613 s12 – ILP2 — 17

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2
cache misses

• Advantages
– Relieves need to have very fast thread-switching

– Doesn’t slow down thread, since instructions from other
threads issued only when the thread encounters a costly
stall

• Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

CS613 s12 – ILP2 — 18

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Limits to ILP

• Most techniques for increasing performance increase power
consumption

• The key question is whether a technique is energy efficient:
does it increase power consumption faster than it increases
performance?

• Multiple issue processors techniques all are energy
inefficient:

1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained
performance

• Number of transistors switching = f(peak issue rate), and
performance = f(sustained rate),
growing gap between peak and sustained performance
⇒⇒⇒⇒ increasing energy per unit of performance

