Speculation

» Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct
— Speculation = fetch, issue, and execute instructions as if

branch predictions were always correct
— Dynamic scheduling = only fetches and issues
instructions

« Essentially a data flow execution model:
Operations execute as soon as their operands are
available
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Speculation

+ 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks
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Adding Speculation to Tomasulo

* Must separate execution from allowing
instruction to finish or “commit”

» This additional step called instruction commit

* When an instruction is no longer speculative,
allow it to update the register file or memory

* Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

» This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated
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| Reorder Buffer (ROB)

| * In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

» With speculation, the register file is not updated
until the instruction commits
— (we know definitively that the instruction should execute)

» Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

— ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS
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| Reorder Buffer Entry

| « Each entry in the ROB contains four fields:

1. Instruction type
* a branch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)
2. Destination

* Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value

« Value of instruction result until the instruction commits

4. Ready

* Indicates that instruction has completed execution, and the
value is ready
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| Reorder Buffer operation

* |[Holds instructions in FIFO order, exactly as issued

* [When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station

* Instructions commit =values at head of ROB placed in
registers | ——

+ As aresult, easy to undo Reorder
speculated instructions Buffer
on mispredicted branches
or on exceptions

Commit path

|Res Stations  |Res Stations|
EP_Addel
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| Recall: 4 Steps of Speculative Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue

If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4. Commit—update register with reorder result

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)
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Tomasulo With Reorder buffer:
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| Getting CPI below 1

| « CPI 21 if issue only 1 instruction every clock cycle

* Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

« 2 types of superscalar processors issue varying
numbers of instructions per clock
— use in-order execution if they are statically scheduled, or
— out-of-order execution if they are dynamically scheduled

* VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the

parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)
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| VLIW: Very Large Instruction Word

J Each “instruction” has explicit coding for multiple
operations
— In 1A-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

» Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches
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| Recall: Unrolled Loop that Minimizes Stalls for Scalar

1 Loop: L.D F0,0(R1) L.D to ADD.D: 1 Cycle
2 L.D  F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,F0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D 0(R1l),F4

10 S.D -8(R1),F8

11 S.D -16(R1),F12

12 DSUBUI R1,R1, #32

13 BNEZ R1, LOOP

14 S.D 8(R1) ,F1l6 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
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| Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2  operation 1 op.2 branch

L.DFQ,0(R1)  L.D F6,-8(R1) 1
L.D F10,-16(R1) L. n 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,FO,F2  ADD.D F8,F6,F2 3
L.D F26,-48(R1) D F12,F10,F2 ADD.D F16,F14,F2 4

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.DO(R1),F4  S.D-8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 7
S.D -32(R1),F20 S.D -40(R1),F24 DSUBUI R1,R1,#48 8
S.D -0(R1),F28 BNEZR1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency
Adaptl(;ldg%gn:PNeed re reygisters in VLIW (15 vs. 6 in SS)
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| Performance beyond single thread ILP

* There can be much higher natural
arallelism in some applications
e.g., Database or Scientific codes)

» Explicit Thread Level Parallelism or Data
Level Parallelism

« Thread: process with own instructions and
data

— thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute
- Data Level Parallelism: Perform identical
operations on data, and lots of data
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| Thread Level Parallelism (TLP)

* ILP exploits implicit parallel operations
within a loop or straight-line code
segment

« TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

- Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many
programs
2. Execution time of multi-threaded programs
* TLP could be more cost-effective to
exploit than ILP
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| Mulithreaded Execution

* Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process
switch = 100s to 1000s of clocks

« When switch?

— Alternate instruction per thread (fine grain)

— When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)
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| Fine-Grained Multithreading

| + Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

» Usually done in a round-robin fashion, skipping
any stalled threads

+ CPU must be able to switch threads every clock

+ Advantage is it can hide both short and long
stalls, since instructions from other threads
executed when one thread stalls

» Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads
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| Course-Grained Multithreading

| » Switches threads only on costly stalls, such as L2
cache misses

+ Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other
tlgrclelads issued only when the thread encounters a costly
sta

» Disadvantage is hard to overcome throughput
Iosstes from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can
complete

» Because of this start-up overhead, coarse-tgrained
multithreading is better for r_educm_ﬁ penalty of
high cost stalls, where pipeline refill << stall time
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| Limits to ILP

| * Most techniques for increasing performance increase power
consumption

The key question is whether a technique is energy efficient:
does it increase power consumption faster than it increases
performance?

+ Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained
performance

* Number of transistors switching = f(peak issue rate), and
performance = f( sustained rate),
growing gap between peak and sustained performance
= increasing energy per unit of performance
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