
1

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Chapter 2

Instruction Level Parallelism

CS613 s12 – ILP — 2

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Instruction Level Parallelism

• Instruction-Level Parallelism (ILP): overlap the
execution of instructions to improve
performance

• 2 approaches to exploit ILP:
1) Rely on hardware to help discover and exploit the parallelism

dynamically (e.g., Pentium 4, AMD Opteron, IBM Power) , and

2) Rely on software technology to find parallelism, statically at
compile-time (e.g., Itanium 2)

2

CS613 s12 – ILP — 3

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Instruction-Level Parallelism (ILP)

• Basic Block (BB) ILP is quite small
– BB: a straight-line code sequence with no branches in

except to the entry and no branches out except at the exit
– average dynamic branch frequency 15% to 25%

=> 4 to 7 instructions execute between a pair of branches
– Plus instructions in BB likely to depend on each other

• To obtain substantial performance
enhancements, we must exploit ILP across
multiple basic blocks

• Simplest: loop-level parallelism to exploit
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

CS613 s12 – ILP — 4

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop-Level Parallelism

• Exploit loop-level parallelism to parallelism by
“unrolling loop” either by
– dynamic via branch prediction or
– static via loop unrolling by compiler
– (Another way is vectors, to be covered later)

• Determining instruction dependence is critical to
Loop Level Parallelism

• If 2 instructions are
– parallel, they can execute simultaneously in a

pipeline of arbitrary depth without causing any
stalls (assuming no structural hazards)

– dependent, they are not parallel and must be
executed in order, although they may often be
partially overlapped

3

CS613 s12 – ILP — 5

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Types of Dependences

• Data Dependence (AKA “True dependence”)

• Name Dependence

• Control Dependence

CS613 s12 – ILP — 6

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

• InstrJ is data dependent on InstrI if:
– InstrJ reads an operand that InstrI writes

– or InstrJ is data dependent on InstrK which is dependent on InstrI

• If two instructions are data dependent, they cannot
execute simultaneously or be completely overlapped

• Data dependence in instruction sequence
⇒⇒⇒⇒ data dependence in source code ⇒⇒⇒⇒ effect of
original data dependence must be preserved

• If data dependence caused a hazard in pipeline,
this is a Read After Write (RAW) hazard

Data Dependence and Hazards

I: add r1,r2,r3

J: sub r4,r1,r3

4

CS613 s12 – ILP — 7

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

ILP and Data Dependences

• HW/SW must preserve program order:
order instructions would execute in if executed sequentially as
determined by original source program

• Presence of dependence indicates potential for a hazard, but
actual hazard and length of any stall is property of the pipeline

• Importance of the data dependencies
1) indicates the possibility of a hazard

2) determines order in which results must be calculated

3) sets an upper bound on how much parallelism can possibly be exploited

• HW/SW goal: exploit parallelism by preserving program order only
where it affects the outcome of the program

CS613 s12 – ILP — 8

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

• 2 instructions use same register or memory location
(called a name) but there is no flow of data intended
between the instructions associated with that name

Name Dependence

5

CS613 s12 – ILP — 9

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

• InstrJ writes operand before InstrI reads it

Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Read (WAR) hazard

• WAR doesn’t happen in most pipelines of the types
we’ve seen so far because they have reads early (in
ID) and writes late (in WB).

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

Name Dependence #1: Anti-dependence

CS613 s12 – ILP — 10

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Name Dependence #2: Output dependence

• InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”

• If anti-dependence caused a hazard in the pipeline,
called a Write After Write (WAW) hazard

I: sub r1,r4,r3

J: add r1,r2,r3

K: mul r6,r1,r7

6

CS613 s12 – ILP — 11

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Resolving Name Dependences

• Instructions involved in a name dependence can
execute simultaneously if name used in instructions
is changed so instructions do not conflict

– Register renaming resolves name dependence for regs

– Either by compiler or by HW

I: sub r4,r1,r3

J: add r1,r2,r3

K: mul r6,r1,r7

I: sub r4,r1,r3

J: add r5,r2,r3

K: mul r6,r1,r7

CS613 s12 – ILP — 12

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Control Dependencies

• Every instruction is control dependent on
some set of branches, and, in general, these
control dependencies must be preserved to
preserve program order

if p1 {

S1;

};

if p2 {

S2;

}

• S1 is control dependent on p1, and S2 is
control dependent on p2 but not on p1.

7

CS613 s12 – ILP — 13

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Control Dependence Ignored

• Control dependence need not be
preserved
– We are willing to execute instructions that should not

have been executed, thereby violating the control
dependences, if we can do so without affecting
correctness of the program

• Instead, 2 properties critical to program
correctness are
1) exception behavior and

2) data flow

CS613 s12 – ILP — 14

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Exception Behavior

• Preserving exception behavior
⇒⇒⇒⇒ any changes in instruction execution order
must not change how exceptions are raised in
program
(⇒⇒⇒⇒ no new exceptions)

• Example:
DADDU R2,R3,R4

BEQZ R2,L1

LW R1,0(R2)

L1:

– (Assume branches not delayed)

• If we move LW before BEQZ, we might have a
(new) memory address exception

8

CS613 s12 – ILP — 15

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Data Flow

• Data flow: actual flow of data values among
instructions that produce results and those that
consume them

– branches make flow dynamic, determine which instruction is
supplier of data

• Example:

DADDU R1,R2,R3

BEQZ R4,L

DSUBU R1,R5,R6

L: …

OR R7,R1,R8

• OR depends on DADDU or DSUBU?
Must preserve data flow on execution

CS613 s12 – ILP — 16

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

9

CS613 s12 – ILP — 17

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

12%

22%

18%

11%
12%

4%
6%

9%
10%

15%

0%

5%

10%

15%

20%

25%

co
m
pr
es

s

eq
nt
ot
t

es
pr
es

so gc
c li

do
du

c
ea

r

hy
dr
o2

d

m
dl
jd
p

su
2c

or

M
is

p
re

d
ic

ti
o
n
 R

a
te

Static Branch Prediction

• To reorder code around branches, need to predict
branch statically when compile

• Simplest scheme is to predict a branch as taken
– Average misprediction = untaken branch frequency = 34% SPEC

• More accurate
scheme predicts
branches using
profile
information
collected from
earlier runs, and
modify
prediction
based on last
run:

Integer Floating Point

CS613 s12 – ILP — 18

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Dynamic Branch Prediction

• Why does prediction work?
– Underlying algorithm has regularities

– Data that is being operated on has regularities

– Instruction sequence has redundancies that are artifacts of
way that humans/compilers think about problems

• Is dynamic branch prediction better than static
branch prediction?

– Seems to be

– There are a small number of important branches in programs
which have dynamic behavior

10

CS613 s12 – ILP — 19

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)

• Branch History Table: Lower bits of PC address
index table of 1-bit values

– Says whether or not branch taken last time

– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iterations before exit):

– End of loop case, when it exits instead of looping as before

– First time through loop on next time through code, when it
predicts exit instead of looping

CS613 s12 – ILP — 20

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

• Solution: 2-bit scheme where change prediction
only if get misprediction twice

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

11

CS613 s12 – ILP — 21

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

18%

5%

12%
10%

9%

5%

9% 9%

0%
1%

0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

eq
nt
ot
t

es
pr
es

so gc
c li

sp
ic
e

do
du

c

sp
ic
e

fp
pp

p

m
at
rix

30
0

na
sa

7

M
is

p
re

d
ic

ti
o
n
 R

a
te

BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch

– Got branch history of wrong branch when index the table

• 4096 entry table:

Integer
Floating Point

CS613 s12 – ILP — 22

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tournament Predictors

• Multilevel branch predictor

• Use n-bit saturating counter to choose between
predictors

• Usual choice between global and local predictors

12

CS613 s12 – ILP — 23

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Comparing Predictors (Fig. 2.8)

• Advantage of tournament predictor is ability to
select the right predictor for a particular branch

– Particularly crucial for integer benchmarks.

– A typical tournament predictor will select the global predictor
almost 40% of the time for the SPEC integer benchmarks and
less than 15% of the time for the SPEC FP benchmarks

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

• Branch target calculation is costly and stalls the
instruction fetch.

• BTB stores PCs the same way as caches

• The PC of a branch is sent to the BTB

• When a match is found the corresponding
Predicted PC is returned

• If the branch was predicted taken, instruction
fetch continues at the returned predicted PC

Branch Target Buffers (BTB)

13

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Branch Target Buffers

CS613 s12 – ILP — 26

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop unrolling

Loop: lw $t0, 0($s1)
addi $s1, $s1, -4
addu $t0, $t0, $s2
sw $t0, 4($s1)
bne $s1, $zero, Loop

Loop: lw $t0, 0($s1)
addi $s1, $s1, -4
addu $t0, $t0, $s2
sw $t0, 4($s1)
lw $t0, 0($s1)

addi $s1, $s1, -4
addu $t0, $t0, $s2
sw $t0, 4($s1)
bne $s1, $zero, Loop

Dependency introduced by unrolling

14

CS613 s12 – ILP — 27

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Loop unrolling (2)

Loop: lw $t0, 0($s1)
addi $s1, $s1, -4
addu $t0, $t0, $s2
sw $t0, 4($s1)
lw $t6, 0($s1)

addi $s1, $s1, -4
addu $t6, $t6, $s2
sw $t6, 4($s1)
bne $s1, $zero, Loop

Rename register to

Eliminate dependency

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Dynamic Scheduling (2.4)

15

CS613 s12 – ILP — 29

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Advantages of Dynamic Scheduling

• Dynamic scheduling - hardware rearranges the
instruction execution to reduce stalls while
maintaining data flow and exception behavior

• It handles cases when dependences unknown at
compile time

– it allows the processor to tolerate unpredictable delays such
as cache misses, by executing other code while waiting for
the miss to resolve

• It allows code that compiled for one pipeline to
run efficiently on a different pipeline

• It simplifies the compiler

CS613 s12 – ILP — 30

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

HW Schemes: Instruction Parallelism

• Key idea: Allow instructions behind stall to proceed
DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F12,F8,F14

• Enables out-of-order execution and allows out-of-
order completion (e.g., SUBD)

– In a dynamically scheduled pipeline, all instructions still pass
through issue stage in order (in-order issue)

• Will distinguish when an instruction begins
execution and when it completes execution; between
2 times, the instruction is in execution

• Note: Dynamic execution creates WAR and WAW
hazards and makes exceptions harder

16

CS613 s12 – ILP — 31

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Dynamic Scheduling Step 1

• Simple pipeline had 1 stage to check both
structural and data hazards: Instruction
Decode (ID), also called Instruction Issue

• Split the ID pipe stage of simple 5-stage
pipeline into 2 stages:

• Issue—Decode instructions, check for
structural hazards

• Read operands—Wait until no data hazards,
then read operands

CS613 s12 – ILP — 32

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

A Dynamic Algorithm: Tomasulo’s

• For IBM 360/91 (before caches!)
– ⇒⇒⇒⇒ Long memory latency

• Goal: High Performance without special compilers

• Small number of floating point registers (4 in 360)
prevented interesting compiler scheduling of operations

– This led Tomasulo to try to figure out how to get more effective registers
— renaming in hardware!

• Why Study 1966 Computer?

• The descendants of this have flourished!
– Alpha 21264, Pentium 4, AMD Opteron, Power 5, …

17

CS613 s12 – ILP — 33

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Algorithm

• Control & buffers distributed with Function Units (FU)
– FU buffers called “reservation stations”; have pending operands

• Registers in instructions replaced by values or pointers
to reservation stations(RS); called register renaming ;

– Renaming avoids WAR, WAW hazards

– More reservation stations than registers, so can do optimizations
compilers can’t

• Results to FU from RS, not through registers, over
Common Data Bus that broadcasts results to all FUs

– Avoids RAW hazards by executing an instruction only when its
operands are available

• Load and Stores treated as FUs with RSs as well

• Integer instructions can go past branches (predict
taken), allowing FP ops beyond basic block in FP queue

CS613 s12 – ILP — 34

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Organization

FP addersFP adders

Add1
Add2
Add3

FP multipliersFP multipliers

Mult1
Mult2

From Mem FP Registers

Reservation
Stations

Common Data Bus (CDB)

To Mem

FP Op
Queue

Load Buffers

Store
Buffers

Load1
Load2
Load3
Load4
Load5
Load6

18

CS613 s12 – ILP — 35

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reservation Station Components

Op: Operation to perform in the unit (e.g., + or –)

Vj, Vk: Value of Source operands
– Store buffers has V field, result to be stored

Qj, Qk: Reservation stations producing source
registers (value to be written)

– Note: Qj,Qk=0 => ready

– Store buffers only have Qi for RS producing result

Busy: Indicates reservation station or FU is busy

Register result status—Indicates which functional unit
will write each register, if one exists. Blank when no
pending instructions that will write that register.

CS613 s12 – ILP — 36

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue
If reservation station free (no structural hazard),
control issues instr & sends operands (renames registers).

2. Execute—operate on operands (EX)
When both operands ready then execute;
if not ready, watch Common Data Bus for result

3. Write result—finish execution (WB)
Write on Common Data Bus to all awaiting units;
mark reservation station available

• Normal data bus: data + destination (“go to” bus)

• Common data bus: data + source (“come from” bus)
– 64 bits of data + 4 bits of Functional Unit source address

– Write if matches expected Functional Unit (produces result)

– Does the broadcast

• Example speed:
3 clocks for Fl .pt. +,-; 10 for * ; 40 clks for /

19

CS613 s12 – ILP — 37

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 Load1 No

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
0 FU

Clock cycle
counter

FU count
down

Instruction stream

3 Load/Buffers

3 FP Adder R.S.
2 FP Mult R.S.

CS613 s12 – ILP — 38

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 1

Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 Load2 No

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
1 FU Load1

20

CS613 s12 – ILP — 39

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 2
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
2 FU Load2 Load1

Note: Can have multiple loads outstanding

CS613 s12 – ILP — 40

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 3
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 Load1 Yes 34+R2

LD F2 45+ R3 2 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
3 FU Mult1 Load2 Load1

• Note: registers names are removed (“renamed”) in Reservation
Stations; MULT issued

• Load1 completing; what is waiting for Load1?

21

CS613 s12 – ILP — 41

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 4
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 Load2 Yes 45+R3

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 Yes SUBD M(A1) Load2

Add2 No

Add3 No

Mult1 Yes MULTD R(F4) Load2

Mult2 No

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
4 FU Mult1 Load2 M(A1) Add1

• Load2 completing; what is waiting for Load2?

CS613 s12 – ILP — 42

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 5
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

2 Add1 Yes SUBD M(A1) M(A2)

Add2 No

Add3 No

10 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
5 FU Mult1 M(A2) M(A1) Add1 Mult2

• Timer starts down for Add1, Mult1

22

CS613 s12 – ILP — 43

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 6
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

1 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

9 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
6 FU Mult1 M(A2) Add2 Add1 Mult2

• Issue ADDD here despite name dependency on F6?

CS613 s12 – ILP — 44

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 7
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

0 Add1 Yes SUBD M(A1) M(A2)

Add2 Yes ADDD M(A2) Add1

Add3 No

8 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
7 FU Mult1 M(A2) Add2 Add1 Mult2

• Add1 (SUBD) completing; what is waiting for it?

23

CS613 s12 – ILP — 45

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 8
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

2 Add2 Yes ADDD (M-M) M(A2)

Add3 No

7 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
8 FU Mult1 M(A2) Add2 (M-M) Mult2

CS613 s12 – ILP — 46

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 9
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

1 Add2 Yes ADDD (M-M) M(A2)

Add3 No

6 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
9 FU Mult1 M(A2) Add2 (M-M) Mult2

24

CS613 s12 – ILP — 47

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 10
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

0 Add2 Yes ADDD (M-M) M(A2)

Add3 No

5 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
10 FU Mult1 M(A2) Add2 (M-M) Mult2

• Add2 (ADDD) completing; what is waiting for it?

CS613 s12 – ILP — 48

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 11
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

4 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
11 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Write result of ADDD here?

• All quick instructions complete in this cycle!

25

CS613 s12 – ILP — 49

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 12
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

3 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
12 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

CS613 s12 – ILP — 50

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 13
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

2 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
13 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

26

CS613 s12 – ILP — 51

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 14
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

1 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
14 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

CS613 s12 – ILP — 52

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 15
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

0 Mult1 Yes MULTD M(A2) R(F4)

Mult2 Yes DIVD M(A1) Mult1

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
15 FU Mult1 M(A2) (M-M+M)(M-M) Mult2

• Mult1 (MULTD) completing; what is waiting for it?

27

CS613 s12 – ILP — 53

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 16
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

40 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
16 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Just waiting for Mult2 (DIVD) to complete

CS613 s12 – ILP — 54

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Faster than light computation
(skip a couple of cycles)

28

CS613 s12 – ILP — 55

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 55
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

1 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
55 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

CS613 s12 – ILP — 56

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 56
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

0 Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Mult2

• Mult2 (DIVD) is completing; what is waiting for it?

29

CS613 s12 – ILP — 57

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Example Cycle 57
Instruction status: Exec Write

Instruction j k Issue Comp Result Busy Address

LD F6 34+ R2 1 3 4 Load1 No

LD F2 45+ R3 2 4 5 Load2 No

MULTD F0 F2 F4 3 15 16 Load3 No

SUBD F8 F6 F2 4 7 8

DIVD F10 F0 F6 5 56 57

ADDD F6 F8 F2 6 10 11

Reservation Stations: S1 S2 RS RS

Time Name Busy Op Vj Vk Qj Qk

Add1 No

Add2 No

Add3 No

Mult1 No

Mult2 Yes DIVD M*F4 M(A1)

Register result status:

Clock F0 F2 F4 F6 F8 F10 F12 ... F30
56 FU M*F4 M(A2) (M-M+M)(M-M) Result

• Once again: In-order issue, out-of-order execution and
out-of-order completion.

CS613 s12 – ILP — 58

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Why can Tomasulo overlap
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations

– Also buffer old values of registers - totally avoiding the WAR
stall

• Other perspective: Tomasulo building data
flow dependency graph on the fly

30

CS613 s12 – ILP — 59

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo’s scheme offers 2 major
advantages

1. Distribution of the hazard detection logic
– distributed reservation stations and the CDB

– If multiple instructions waiting on single result, & each
instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– If a centralized register file were used, the units would
have to read their results from the registers when
register buses are available

2. Elimination of stalls for WAW and WAR
hazards

CS613 s12 – ILP — 60

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed

• Performance limited by Common Data Bus
– Each CDB must go to multiple functional units
⇒⇒⇒⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle
limited to one!

» Multiple CDBs ⇒⇒⇒⇒ more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later

