
1

Some charts based on lecture slides
provided by Morgan/Kauffman

Performance (from Chapter 1)

2
Some charts based on lecture slides
provided by Morgan/Kauffman

Performance(X) Execution_time(Y)

n = =

Performance(Y) Execution_time(X)

Definition: Performance

performance(x) = 1
execution_time(x)

" X is n times faster than Y" means

2

3
Some charts based on lecture slides
provided by Morgan/Kauffman

Amdahl’s Law

(((())))
enhanced

enhanced
enhanced

new

old
overall

Speedup

Fraction
 Fraction

1

ExTime

ExTime
 Speedup

++++−−−−

========

1

Best you could ever hope to do:

(((())))enhanced
maximum Fraction - 1

1
 Speedup ====

(((()))) 







++++−−−−××××====

enhanced

enhanced
enhancedoldnew Speedup

Fraction
Fraction ExTime ExTime 1

4
Some charts based on lecture slides
provided by Morgan/Kauffman

Amdahl’s Law example

• Application: Network Server, 60% of time is spent waiting on
I/O

• We replace the server’s processor with one that is 10 times
faster

()

()
56.1

64.0

1

10

0.4
 0.4 1

1

Speedup

Fraction
 Fraction 1

1
 Speedup

enhanced

enhanced
enhanced

overall

==

+−

=

+−

=

The new processor

improves only the 40% of

the execution time that is

not I/O

10 times faster processor

provides only 56% speedup

3

5
Some charts based on lecture slides
provided by Morgan/Kauffman

“Processor performance equation”

CPU time of a program

= # of instructions executed by the program

x Average Clock Cycles per instruction (CPI)

x Clock cycle time

CPU time of a program

= # of instructions executed by the program

x Average Clock Cycles per instruction (CPI)

x Clock cycle time

Example:

- A program executes 1000 instructions on a particular processor

- CPI of this processor = 2

- Processor has a 4GHz clock (cycle time = 250psec)

CPU time = 103 x 2 x 250x10-12

= 500 nsec

Performance of a computer for a specific
program (that you know a lot about)

6
Some charts based on lecture slides
provided by Morgan/Kauffman

To get a more general idea of a
computer’s performance

• Usually rely on benchmarks vs. real workloads

• To increase predictability, collections of benchmark
applications, called benchmark suites, are popular

• SPECCPU: popular desktop benchmark suite
– CPU only, split between integer and floating point programs

– SPECint2000 has 12 integer, SPECfp2000 has 14 integer pgms

– SPECSFS (NFS file server) and SPECWeb (WebServer) added as
server benchmarks

• Transaction Processing Council measures server
performance and cost-performance for databases

– TPC-C Complex query for Online Transaction Processing

– TPC-H models ad hoc decision support

– TPC-W a transactional web benchmark

– TPC-App application server and web services benchmark

4

7
Some charts based on lecture slides
provided by Morgan/Kauffman

How Summarize Suite Performance

• Arithmetic average of execution time of all pgms?
– But they vary by 4X in speed, so some would be more important

than others in arithmetic average

• Could add a weights per program, but how pick
weight?

– Different companies want different weights for their products

• SPECRatio: Normalize execution times to reference
computer, yielding a ratio proportional to
performance =

time on reference computer

time on computer being rated

8
Some charts based on lecture slides
provided by Morgan/Kauffman

How Summarize Suite Performance

• If program SPECRatio on Computer A is 1.25
times larger than Computer B, then

B

A

A

B

B

reference

A

reference

B

A

ePerformanc

ePerformanc

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

imeExecutionT

SPECRatio

SPECRatio

==

==25.1

5

Some charts based on lecture slides
provided by Morgan/Kauffman

Dependability / Reliability

10
Some charts based on lecture slides
provided by Morgan/Kauffman

Define and quantity dependability

• How decide when a system is operating properly?

• Infrastructure providers now offer Service Level
Agreements (SLA) to guarantee that their
networking or power service would be dependable

• Systems alternate between 2 states of service
with respect to an SLA:

1. Service accomplishment, where the service is
delivered as specified in SLA

2. Service interruption, where the delivered service
is different from the SLA

• Failure = transition from state 1 to state 2

• Restoration = transition from state 2 to state 1

6

11
Some charts based on lecture slides
provided by Morgan/Kauffman

Define and quantity dependability

• Module reliability = measure of continuous service
accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability

2. Failures In Time (FIT) = 1/MTTF, the rate of failures
• Traditionally reported as failures per billion hours of operation

• Mean Time To Repair (MTTR) measures Service
Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate
between the 2 states of accomplishment and
interruption (number between 0 and 1, e.g. 0.9)

• Module availability = MTTF / (MTTF + MTTR)

