
CS613

Apx C - Memory Hierarchy 1

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Appendix C
Memory Hierarchy

CS613 s12 – Appendix C — 2

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Levels of the Memory Hierarchy

Registers

Cache

Memory

Disk

Instr. Operands

Blocks

Pages

Upper Level

Lower Level

faster

Larger

CS613

Apx C - Memory Hierarchy 2

CS613 s12 – Appendix C — 3

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reminder: The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)

– Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon
(e.g., straightline code, array access)

CS613 s12 – Appendix C — 4

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Reminder: Terminology

• Hit: data appears in some block in the upper level (example:
Block X)

– Hit Rate: the fraction of memory access found in the upper level

– Hit Time: Time to access the upper level

– Miss: data needs to be retrieved from a block in the lower level (Block Y)

– Miss Rate = 1 - (Hit Rate)

– Miss Penalty: Time to access the upper level (determine it’s a miss)
+ Time to replace a block in the upper level
+ Time to deliver the block the processor

• Hit Time << Miss Penalty

CS613

Apx C - Memory Hierarchy 3

CS613 s12 – Appendix C — 5

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Cache Measures

• Hit rate: fraction found in that level

– So high that usually talk about Miss rate

– Miss rate fallacy: only useful as a rule-of-thumb.
as MIPS to CPU performance,
miss rate to average memory access time in memory

• Average memory-access time
= Hit time + Miss rate x Miss penalty (ns or clocks)

• Miss penalty: time to replace a block from
lower level, including time to replace in CPU

– access time: time to lower level

= f(latency to lower level)

– transfer time: time to transfer block

=f(BW between upper & lower levels)

CS613 s12 – Appendix C — 6

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

4 Questions for Memory Hierarchy

• Q1: Where can a block be placed in the upper level?
(Block placement)

• Q2: How is a block found if it is in the upper level?
(Block identification)

• Q3: Which block should be replaced on a miss?
(Block replacement)

• Q4: What happens on a write?
(Write strategy)

CS613

Apx C - Memory Hierarchy 4

CS613 s12 – Appendix C — 7

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Q1: Where can a block be placed in the upper
level?

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative

– S.A. Mapping = Block Number Modulo Number Sets

Cache

01234567 0123456701234567

Memory

1111111111222222222233

01234567890123456789012345678901

Full Mapped
Direct Mapped
(12 mod 8) = 4

2-Way Assoc
(12 mod 4) = 0

CS613 s12 – Appendix C — 8

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Q2: How is a block found if it is in the upper level?

• Tag on each block
– No need to check index or block offset

• Increasing associativity shrinks index, expands
tag

Block
Offset

Block Address

IndexTag

CS613

Apx C - Memory Hierarchy 5

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Q3: After a cache read miss, if there are no empty
cache blocks, which block should be removed from
the cache?

A randomly chosen block?
Easy to implement, how

well does it work?

The Least Recently Used
(LRU) block? Appealing,
but hard to implement for
high associativity

Size Random LRU

16 KB 5.7% 5.2%

64 KB 2.0% 1.9%

256 KB 1.17% 1.15%

Miss Rate for 2-way Set Associative Cache

Also,
try

other
LRU

approx.

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Q4: What happens on a write?

Write-Through Write-Back

Policy

Data written to cache

block

also written to lower-level

memory

Write data only to the

cache

Update lower level when

a block falls out of the

cache

Advantages

Lower level stays (fairly)

up-to-date with new

values

Repeated writes don’t

affect the lower level

Disadvantages
Write queues may delay

updates

Lower level out-of-date

with new values

(problem in multi

processors, DMA, etc)

CS613

Apx C - Memory Hierarchy 6

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Write Buffers for Write-Through Caches

Q. Why a write buffer ?

Processor
Cache

Write Buffer

Lower

Level

Memory

Holds data awaiting write-through to
lower level memory

A. So CPU doesn’t stall

Q. Why a buffer, why not
just one register ?

A. Bursts of writes are
common.

CS613 s12 – Appendix C — 12

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

5 Basic Cache Optimizations

• Reducing Miss Rate

1. Larger Block size

2. Larger Cache size

3. Higher Associativity

• Reducing Miss Penalty

4. Multilevel Caches

• Reducing hit time

5. Giving Reads Priority over Writes
• E.g., Read complete before earlier writes in write buffer

CS613

Apx C - Memory Hierarchy 7

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

The Limits of Physical Addressing

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

“Physical addresses” of memory locations

Data

All programs share one address space:
The physical address space

No way to prevent a program from accessing any
machine resource

May desire larger memory than the physical

space has

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Solution: Add a Layer of Indirection

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

User programs run in an standardized

virtual address space

Address Translation hardware
managed by the operating system (OS)

maps virtual address to physical memory

“Physical Addresses”

Address
Translation

Virtual Physical

“Virtual Addresses”

CS613

Apx C - Memory Hierarchy 8

CS613 s12 – Appendix C — 15

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Three Advantages of Virtual Memory

• Translation:
– Program can be given consistent view of memory, even though physical

memory is scrambled

– Only the most important part of program (“Working Set”) must be in
physical memory.

– Contiguous structures (like stacks) use only as much physical memory
as necessary yet still grow later.

• Protection:
– Different threads (or processes) protected from each other.

– Different pages can be given special behavior

» (Read Only, Invisible to user programs, etc).

– Kernel data protected from User programs

– Very important for protection from malicious programs

• Sharing:
– Can map same physical page to multiple users

(“Shared memory”)

CS613 s12 – Appendix C — 16

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Physical

Memory Space

• Page table maps virtual page numbers to physical frames (“PTE” =
Page Table Entry)

• Virtual memory => treat memory ≈≈≈≈ cache for disk

Details of Page Table

Virtual Address

Page Table

index
into
page
table

Page Table
Base Reg

V
Access
Rights PA

V page no. offset
12

table located
in physical
memory

P page no. offset

12

Physical Address

frame

frame

frame

frame

virtual

address

Page Table

CS613

Apx C - Memory Hierarchy 9

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Speeding up the Translation process

“Physical
Addresses”

CPU Memory

A0-A31 A0-A31

D0-D31 D0-D31

Data

TLB also contains
protection bits for virtual address

Virtual Physical

“Virtual Addresses”

Translation
Look-Aside

Buffer
(TLB)

Translation Look-Aside Buffer (TLB)
A small fully-associative cache of

mappings from virtual to physical addresses

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Use virtual addresses for cache?

“Physical
Addresses”

CPU Main Memory

A0-A31 A0-A31

D0-D31 D0-D31

Only use TLB on a cache miss !

Translation
Look-Aside

Buffer
(TLB)

Virtual Physical

“Virtual Addresses”

Cache
Virtual

D0-D31

Downside: Synonym problem. If two address spaces share a
physical frame, data may be in cache twice. Maintaining
consistency is a nightmare.

CS613

Apx C - Memory Hierarchy 10

CS613 s12 – Appendix C — 19

Adapted from Patterson and Hennessey

(Morgan Kauffman Pubs)

Cache choices versus VM choices

• Caches
– The most important thing is speed

– We choose:

» Direct-Mapped or small Set Associative

» Fast selection of block to be replaced (e.g., Random)

» Write-through

• Virtual memory
– The most important thing is to minimize misses

– We choose:

» Full Associative or large Set Associative

» The best (practical) algorithm for replacing blocks (e.g, LRU)

» Write-back

