
Review of Instruction Set

Architecture Fundamentals

ISA Defined

• Patterson and Hennessy:

– “interface between the hardware and the lowest

level software”

– “includes anything programmers need to know to

make a binary machine language program work

correctly, including instructions, I/O devices, and

son on.”

– “enables many implementations of varying costs

and performances to run identical software”

Some things that an ISA tells us

(generally) about a processor design
• Instructions, instruction classes, and formats

• Data types and formats

• Number of operands per instruction

• Number and types of registers

• Addressing modes

• Ways of accessing memory

•

•

•

The ISA is the starting point for the processor design

“x-Address” Machines

x to do “a=b+c”

3 ADD a,b,c “Natural” for most arithmetic ops

2 COPY a, c Smaller instructions, but we need more

ADD a,b

1 COPY1 c Need still more instructions

ADD b Pretty much un-natural
COPY2 a

0 PUSH b Still more instructions

PUSH c Very un-natural
ADD

POP a

Some top-level options in ISA design
• Complex Instruction Set Computer (CISC) often has:

• Many instructions doing compound operations

• Many complex addressing modes and data types

• Memory access by almost any instruction type

• Many instruction classes, perhaps with varying numbers of operands

• Many options, many different types and variants

• Reduced Instruction Set Computer (RISC) often has:
• Fairly small set of instructions doing simple operations

• Limited set of addressing modes and data types

• Memory access restricted to certain instruction types

• Few instruction classes, few differences in number of operands

• Fewer options, types, variants

Some implications (CISC vs RISC)

• CISC

• Instructions are complex,

we can do a lot with each

one

• RISC

• Instructions are simpler, it

takes more of them to do

a given operation

CPI high, IC low

CPI low, IC high

Most current-generation high-performance microprocessor

designs are RISC

Some things to think about when

we’re designing (1)

“Simplicity favors regularity” (P & H Principle 1)

– The more variations in instructions (formats, …), the more

logic it takes to identify which variation we have in a

particular instruction.

– The more regular the instruction set, the less time we have

to spend decoding the instruction type

Some things to think about when

we’re designing (2)

“Smaller is faster” (P&H Principle 2)

– As we add more and more logic to a design, max speed

tends to drop due to:

• More “things” to select from (e.g, more registers)

– More logic levels needed to decode identifiers

– Wider instructions to specify more units

• Longer path lengths needed

– Signal propagation increases

“Make the common case fast” (P&H Principle 3)

– Based on Amdahl’s Law (Chapter 1)

– Speeding up things you do often gives greater

payoff than speeding up things you do do

infrequently.

Some things to think about when

we’re designing (3)

Some things to think about when

we’re designing (4)

• “Good design demands good compromises”

(P&H Principle 4)

– Much of the time, an improvement in one area

compromises another (ex: Adding registers makes

programmers happy, but may slow the processor

down)

– The best designs exhibit a balance of features

• Memory access is much slower than register

access

– Register access typically 1 clock cycle

– RAM access may be dozens or hundreds of clock

cycles

Some things to think about when

we’re designing (5)

