Review of Instruction Set
Architecture Fundamentals

ISA Defined

* Patterson and Hennessy:

— “interface between the hardware and the lowest
level software”

— “includes anything programmers need to know to
make a binary machine language program work
correctly, including instructions, I/O devices, and
son on.”

— “enables many implementations of varying costs
and performances to run identical software”




Some things that an ISA tells us
(generally) about a processor design

¢ Instructions, instruction classes, and formats
* Data types and formats

* Number of operands per instruction

* Number and types of registers

e Addressing modes

* Ways of accessing memory

The ISA is the starting point for the processor design

“x-Address” Machines

X to do “a=b+c”
3 ADD a,b,c “Natural” for most arithmetic ops
2 COPY a3, c Smaller instructions, but we need more
ADD a,b
1 COPY1lc Need still more instructions
ADD b Pretty much un-natural
COPY2 a
0 PUSH b Still more instructions
PUSH ¢ Very un-natural
ADD
POP a




Some top-level options in ISA design

« Complex Instruction Set Computer (CISC) often has:
* Many instructions doing compound operations
* Many complex addressing modes and data types
* Memory access by almost any instruction type
* Many instruction classes, perhaps with varying numbers of operands
* Many options, many different types and variants

+ Reduced Instruction Set Computer (RISC) often has:
* Fairly small set of instructions doing simple operations
* Limited set of addressing modes and data types
* Memory access restricted to certain instruction types
* Few instruction classes, few differences in number of operands
* Fewer options, types, variants

Some implications (CISC vs RISC)
* CISC
e o o8 ot witn each I CPIigh, Clow
one
* RISC
T akes more o them t do EEEED. CPllow, I igh

a given operation

Most current-generation high-performance microprocessor
designs are RISC




Some things to think about when
we’re designing (1)
“Simplicity favors regularity” (P & H Principle 1)

— The more variations in instructions (formats, ...), the more

logic it takes to identify which variation we have in a
particular instruction.

— The more regular the instruction set, the less time we have
to spend decoding the instruction type

Some things to think about when
we’re designing (2)

“Smaller is faster” (P&H Principle 2)

— As we add more and more logic to a design, max speed
tends to drop due to:
* More “things” to select from (e.g, more registers)
— More logic levels needed to decode identifiers
— Wider instructions to specify more units
* Longer path lengths needed
— Signal propagation increases




Some things to think about when
we’re designing (3)

“Make the common case fast” (P&H Principle 3)
— Based on Amdahl’s Law (Chapter 1)

— Speeding up things you do often gives greater
payoff than speeding up things you do do
infrequently.

Some things to think about when
we’re designing (4)

* “Good design demands good compromises”

(P&H Principle 4)

— Much of the time, an improvement in one area
compromises another (ex: Adding registers makes
programmers happy, but may slow the processor
down)

— The best designs exhibit a balance of features




Some things to think about when
we’re designing (5)
* Memory access is much slower than register
access

— Register access typically 1 clock cycle

— RAM access may be dozens or hundreds of clock
cycles




