
1

Some Advanced Pipelining Concepts –
Appendix A (extracts)

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 2

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

RAW Data Hazard

Time (clock cycles)

IF ID/RF EX MEM WB

2

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 3

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

A two-instruction RAW hazard

Time (clock cycles)

IF ID/RF EX MEM WB

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 4

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

A 3-instruction RAW hazard

Time (clock cycles)

IF ID/RF EX MEM WB

3

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 5

Coping with RAW hazards: Forwarding

• Addresses RAW data hazard

• The idea:
– When a RAW hazard is present, instead of waiting until the

first instruction actually writes the new value to the register…

» take the updated value directly when it is available in the
first instruction’s execution (

» and inject it as one of the inputs to the later instruction’s
EX stage

• Obviously, this requires modifying the hardware
design

– Add’l control logic to detect the hazard

– Datapath to forward the updated value to earlier stages

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 6

Time (clock cycles)

Forwarding to Avoid Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

4

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 7

HW Change for Forwarding

M
E
M
/W

B

I
D
/E
X

E
X
/M

E
M

Data
Memory

A
L
U

m
ux

m
ux

R
e
giste

rs

NextPC

Immediate

m
ux

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 8

Time (clock cycles)

Forwarding to Avoid LW-SW Data Hazard

I
n
s
t
r.

O
r
d
e
r

add r1,r2,r3

lw r4, 0(r1)

sw r4,12(r1)

or r8,r6,r9

xor r10,r9,r11

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

5

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 9

Time (clock cycles)

I
n
s
t
r.

O
r
d
e
r

lw r1, 0(r2)

sub r4,r1,r6

and r6,r1,r7

or r8,r1,r9

Data Hazard Even with Forwarding

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 10

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

6

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 11

Control Hazard on Branches: Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5

18: or r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch Reg

Reg

A
L
U

DMemIfetch

What do you do with the 3 instructions in between?

If CPI = 1, 30% branch,
Stall 3 cycles => new CPI = 1.9!

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 12

Goals of a branch stall reduction strategy

Determine if the branch is taken sooner,

AND

Compute the “taken” branch address earlier

7

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 13

One approach

• We could change the ISA to substitute beqz (branch if
reg=0) and bnez (branch if reg <> 0) for the beq and bne
instructions.

• Then:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 14

A
d
d
e
r

I
F
/I
D

Pipelined MIPS Datapath
Figure A.24, page A-38

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

A
L
U

M
e
m
ory

R
e
g
F
ile

M
U
X

D
ata

M
e
m
ory

M
U
X

Sign
Extend

Zero?

M
E
M
/W

B

E
X
/M

E
M

4

A
d
d
e
r

Next
SEQ PC

RD RD RD W
B
 D
at
a

• Interplay of instruction set design and cycle time.

Next PC

A
d
d
re
ss

RS1

RS2

Imm

M
U
X

I
D
/E
X

8

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 15

For general Branches:
Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 16

Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

– 1 slot delay allows proper
decision and branch target
address in 5 stage pipeline

– MIPS uses this

Introduce a delay by
changing the program to
insert n instructions that
would:
(a) have to be executed
whether or not the branch
is taken OR
(b) would not produce an
incorrect result

9

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 17

Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3

if $1=0 then

delay slot

add $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add $1,$2,$3
add $1,$2,$3

if $1=0 then

sub $4,$5,$6

add $1,$2,$3

if $1=0 then

sub $4,$5,$6

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 18

Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processors go to
deeper pipelines and multiple issue, the branch
delay grows and needs more than one delay slot

– Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches
relatively cheaper

10

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 19

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 20

Extending the MIPS pipeline for
multicycle operations

• Floating-point operations are inherently more
complex than integer operations

• Setting clock cycle time so that the EX phase of
all instructions (including floating point)
completes in one cycle will make the cycle
impossibly slow

• To get around this:
1. Allow the EX cycle to repeat as many times as needed to

complete the operation, and

2. Provide multiple parallel execution units

11

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 21

The concept (example)

IF ID

Int

Mult

FP Add

Div

MEM WB

1 cycle

7 cycles

4 cycles

25 cycles

ID modified to:

- determine which EX unit an instruction should use

- hold instructions until data hazards resolved

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 22

Latency and Initiation Interval

• Latency
– Number of cycles that must elapse between:

» the end of the EX phase of the instruction of interest and

» An instruction that uses that instruction’s result

• Initiation interval
– Number of cycles that must elapse between two instructions

that use the same EX unit

12

Adapted from Hennessey and Patterson,
Morgan Kaufman, Pub UAH CS613 F11 – Pipelining - 23

A more realistic approach (example)

MEM WB

Integer Unit (L=0, I=1)

IF

FP/Int Multiply (L=6, I=1)

FP Add (L=3, I=1)

FP/Int Divide (L=24, I=25)

ID

