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Some Advanced Pipelining Concepts –
Appendix A (extracts)
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A two-instruction RAW hazard
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Coping with RAW hazards: Forwarding

• Addresses RAW data hazard

• The idea:
– When a RAW hazard is present, instead of waiting until the 

first instruction actually writes the new value to the register…

» take the updated value directly when it is available in the 
first instruction’s execution (

» and inject it as one of the inputs to the later instruction’s 
EX stage 

• Obviously, this requires modifying the hardware 
design

– Add’l control logic to detect the hazard

– Datapath to forward the updated value to earlier stages
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HW Change for Forwarding
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Forwarding to Avoid LW-SW Data Hazard
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Data Hazard Even with Forwarding
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Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW  a,Ra 

LW Re,e 

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

Software Scheduling to Avoid Load Hazards

Fast code:

LW Rb,b

LW Rc,c

LW Re,e 

ADD Ra,Rb,Rc

LW Rf,f

SW  a,Ra 

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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Control Hazard on Branches: Three Stage Stall

10: beq r1,r3,36

14: and r2,r3,r5 

18: or  r6,r1,r7

22: add r8,r1,r9

36: xor r10,r1,r11
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What do you do with the 3 instructions in between?

If CPI = 1, 30% branch, 
Stall 3 cycles => new CPI = 1.9!
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Goals of a branch stall reduction strategy

Determine if the branch is taken sooner, 

AND

Compute the “taken” branch address earlier
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One approach

• We could change the ISA to substitute beqz (branch if 
reg=0) and bnez (branch if reg <> 0) for the beq and bne
instructions.

• Then:
– Move Zero test to ID/RF stage

– Adder to calculate new PC in ID/RF stage

– 1 clock cycle penalty for branch versus 3
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For general Branches:
Four Branch Hazard Alternatives

#1: Stall until branch direction is clear

#2: Predict Branch Not Taken
– Execute successor instructions in sequence

– “Squash” instructions in pipeline if branch actually taken

– Advantage of late pipeline state update

– 47% MIPS branches not taken on average

– PC+4 already calculated, so use it to get next instruction

#3: Predict Branch Taken
– 53% MIPS branches taken on average

– But haven’t calculated branch target address in MIPS

» MIPS still incurs 1 cycle branch penalty

» Other machines: branch target known before outcome

Adapted from Hennessey and Patterson,
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Four Branch Hazard Alternatives

#4: Delayed Branch
– Define branch to take place AFTER a following instruction

branch instruction

sequential successor1
sequential successor2
........

sequential successorn

branch target if taken

– 1 slot delay allows proper 
decision and branch target 
address in 5 stage pipeline

– MIPS uses this

Introduce a delay by 
changing the program to 
insert n instructions that 
would:
(a) have to be executed 
whether or not the branch 
is taken OR 
(b) would not produce an 
incorrect result
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Scheduling Branch Delay Slots (Fig A.14)

• A is the best choice, fills delay slot & reduces instruction count (IC)

• In B, the sub instruction may need to be copied, increasing IC

• In B and C, must be okay to execute sub when branch fails

add  $1,$2,$3

if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add  $1,$2,$3

if $1=0 then

delay slot

add  $1,$2,$3

if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

if $2=0 then

add  $1,$2,$3
add  $1,$2,$3

if $1=0 then

sub $4,$5,$6

add  $1,$2,$3

if $1=0 then

sub $4,$5,$6
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Delayed Branch

• Compiler effectiveness for single branch delay slot:
– Fills about 60% of branch delay slots

– About 80% of instructions executed in branch delay slots useful 
in computation

– About 50% (60% x 80%) of slots usefully filled

• Delayed Branch downside: As processors go to 
deeper pipelines and multiple issue, the branch 
delay grows and needs more than one delay slot

– Delayed branching has lost popularity compared to more 
expensive but more flexible dynamic approaches

– Growth in available transistors has made dynamic approaches 
relatively cheaper
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Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

Pipeline speedup = Pipeline depth
1 +Branch frequency ×Branch penalty
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Extending the MIPS pipeline for 
multicycle operations

• Floating-point operations are inherently more 
complex than integer operations

• Setting clock cycle time so that the EX phase of 
all instructions (including floating point) 
completes in one cycle will make the cycle 
impossibly slow

• To get around this: 
1. Allow the EX cycle to repeat as many times as needed to 

complete the operation, and

2. Provide multiple parallel execution units 
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The concept (example)

IF ID

Int

Mult

FP Add

Div

MEM WB

1 cycle

7 cycles

4 cycles

25 cycles

ID modified to:

- determine which EX unit an instruction should use

- hold instructions until data hazards resolved 
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Latency and Initiation Interval

• Latency
– Number of cycles that must elapse between:

» the end of the EX phase of the instruction of interest and

» An instruction that uses that instruction’s result

• Initiation interval
– Number of cycles that must elapse between two instructions 

that use the same EX unit
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A more realistic approach (example)

MEM WB

Integer Unit (L=0, I=1)

IF

FP/Int Multiply (L=6, I=1)

FP Add (L=3, I=1)

FP/Int Divide (L=24, I=25)

ID


