

- 1. (3 pts) What does CSMA/CD stand for?
- 2. (3 pts) How is the "CD" in CSMA/CD different from the "CA" used in the IEEE 802.11 wireless protocol?
- 3. (8 pts) Draw the IEEE 802.3 frame format. Label and show the size of each field.
- (8 pts) A hypothetical Ethernet implementation has a slot time of 100 microseconds, a maximum length of 5000m, and transmits data at 25Mbps. List the possible wait times in the second round of the Exponential Backoff algorithm for this Ethernet.
- (5 pts) Briefly explain how the IEEE 802.11 protocol resolves the "hidden node problem."
- 6. (2 pts) At what level of the OSI protocol stack do bridges operate?
- 7. (2 pts) At what level of the OSI protocol stack do routers operate?

8. (7 pts) List the operating rules for a "learning bridge".
9 (7 pts) Priofly avalain how by the
9. (7 pts) Briefly explain how bridges support Virtual LANs.
10. (4 pts) List two good points ("Pro's") and two bad points ("Con's") of Datagram networks.
11. (4 pts) Repeat (10) for Virtual Circuit networks.
12. (6 pts) Name the two classes of routing algorithms that we discussed in class and briefly explain how routing decisions are made in each class.

13. (9 pts) Use Dijkstra's Shortest Path Algorithm to determine the shortest path from A to D. Redraw the graph to show the state at each iteration of the algorithm, showing the current label for each node. Identify permanent and tentative labels.

- 14. (5 pts) List and explain the steps in Distance Vector routing.
- 15. (5 pts) List and explain the steps in Link-State Routing

