
1

Splendor: A Secure, Private, and Location-aware Service Discovery Protocol
Supporting Mobile Services*

Feng Zhu1 Matt Mutka1 Lionel Ni1,2

1Department of Computer Science and Engineering,
Michigan State University,

East Lansing, Michigan, USA

2Department of Computer Science,
Hong Kong University of Science and Technology,

Kowloon, Hong Kong, China
{zhufeng, mutka, ni}@cse.msu.edu

Abstract

In pervasive computing environments, powerful
handheld devices with wireless connections create
opportunities for many new nomadic applications. We
propose a new service discovery model, called Splendor,
supporting nomadic users and services in public
environments. Splendor emphasizes security and supports
privacy. Location awareness is integrated for location
dependent services discovery and is used to lessen service
discovery network infrastructure requirements. We
analyze the Splendor system performance and provide our
experimental results.

1. Introduction
We increase the usage of various computer devices

and network services at our homes or in our offices to
facilitate our daily tasks, but we also spend more effort to
manage these devices and services. Service discovery
protocols simplify the interactions among users, devices,
and services. Many service discovery products and
protocols are designed to solve this dilemma in home and
enterprise environments.

Handheld and wearable computers are becoming more
powerful and practical. As prices decrease, there are more
mobile services and users. Meanwhile, these mobile
devices increasingly support nomadic users by offering
2.5G/3G, wireless LAN, or Bluetooth capabilities. They
may even support critical tasks, as in the scenario below.

David is a physician who volunteers to help patients
such as at a shopping mall in case of emergencies. He has
a handheld with a cell phone (3G), Bluetooth, and IEEE
802.11b built-in. Patrick (a patient) is over 70 and has
heart disease. He also has a handheld similar to David’s.
In his handheld, all his vital signs and disease history are
stored. Assume David and Patrick are at the same
shopping mall on a Saturday, when Patrick has a heart
attack. He pushes one button on his handheld. As a
result, his handheld dials 911 to contact emergency rescue

 ∗ This paper was supported in part by NSF Grants No. CCR-0098017,
EIA-9911074, MSU IRGP Program and the Microsoft Research
Foundation.

services. In addition, the handheld signals Mobile 911
(M911) – which is a request to find help for those in the
immediate vicinity. Via the M911 signal, David is
notified of this emergency and Patrick’s position. David
follows the directions on a map shown on his PDA, while
listening to Patrick’s medical history as he moves towards
Patrick. David finds Patrick and offers some assistance
before the ambulance arrives.

This scenario illustrates that a mobile client discovers
a mobile service in an infrastructure environment. Let’s
analyze this scenario and discuss the challenges in this
type of environment. First, how are people’s mobility and
services’ mobility supported? For example in our
scenario many people (physicians and patients) are at
shopping malls and they come and go. Second, how are
security and privacy provided? For instance, neither
David nor Patrick is a user of the shopping mall
computing system, but we need to authenticate David and
Patrick. Patrick expects that his medical information is
secure and not even revealed to the shopping mall’s
system. Moreover, David wants to offer his expertise
while keeping his privacy. Third, how is location
information, which enables David to easily find Patrick in
case of emergencies, integrated to service discovery?

Based on this scenario, we identify that security,
privacy, and location-awareness are important in service
discovery for both nomadic users and services. Splendor
considers environments, in which services may be
discovered, but mobile users and services may not have
accounts in the infrastructure systems. Therefore users,
services, and network infrastructure systems are not
trusted by each other. To our knowledge, most service
discovery protocols are designed for home or enterprise
environments, but not for these types of untrustworthy
environments, which Splendor targets. We propose a new
model to support mobility, security, and user privacy,
while in the meantime we integrate location-awareness to
service discovery. The security protocols in Splendor
enables all parties to mutually authenticate each other, no
matter if users have accounts in the network infrastructure
systems or not. The security protocols also provide
service authorization, confidentiality, integrity, and non-
repudiation capabilities. Furthermore, Splendor supports
user privacy, but so far we are not aware that any other
service discovery protocol does. Moreover, Splendor

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

2

integrates location-awareness, which we believe that the
integration not only helps the service discovery, but may
lessen the service discovery network infrastructure
requirements as well. While providing these
functionalities, Splendor still keeps the applications as
easy to use as possible.

In Section 2, we discuss related work in service
discovery and location-awareness. Next, in Section 3, we
present our architecture and our ideas to solve all these
challenges. In Section 4, we discuss the system
performance and analyze the critical path of M911, as an
application of the Splendor framework. Last, we list our
future research directions in Section 5.

2. Related Work
Discovery of available services is a basic and critical

task in pervasive computing environments [1]. Many
service discovery protocols or products address service
discovery mechanisms for different environments. Our
work is largely influenced by these projects and is based
upon them. In another paper [2], we categorize and
analyze various service discovery protocols including
Bluetooth Service Discovery Protocol [3], DEAPspace
[4], Intentional Naming System (INS) [5] and INS/Twine
[6], Jini [7], Salutation [8], Secure Service Discovery
Service (SSDS) [9], Service Location Protocol (SLP)
Version 2 [10], and Universal Plug and Play (UPnP) [11].
DEAPspace proposed a service discovery mechanism in
single hop ad hoc environments. Bluetooth SDP enables
nearby Bluetooth devices to discover each other’s
services. UPnP targets home environments. Jini and SLP
focus on enterprise environments. Salutation works for
both home and enterprise environments. Both UPnP and
Salutation are device and appliance oriented. INS
emphasizes name-to-service mapping. INS/Twine and
SSDS address support for large numbers of services.

Only a few protocols have built-in security. SSDS,
from UC Berkeley, implements more security features
than other service discovery protocols [9]. In SSDS,
services and clients trust directories, known as Service
Discovery Service servers. Authentication between
clients and services is based on certificates. Public key
and symmetric key encryption are used for confidentiality
and communication data privacy. Message Authentication
Code (MAC) is used to ensure message integrity.
Services manage their access control lists for their users
and publish on servers, known as capacity servers. In
short, SSDS provides security in distributed environments
such as enterprise environments, but may not work in the
environments that Splendor targets: directories may not be
trusted servers; mobile services may not be able to handle
service authorization; and there may not be centralized
servers to store information. In addition, Splendor
supports non-repudiation and user privacy.

Location-awareness is a key feature in pervasive
computing [12]. Since AT&T OCL Active Badge [13],
the pilot location-awareness project, many location-
awareness research projects have been conducted [14].
Location sensing systems may be categorized as passive
or active systems [15]. Active location sensing systems
have sensing networks and track users’ locations. On the

contrary, passive location sensing systems do not track
users and have distributed sensing devices, from which
users read their location information.

Few projects integrate location information to service
discovery protocols. Nevertheless, many services are
location dependent. Coupled with network connections,
location information may be very useful, such as in our
scenario – M911. We not only use location information to
better serve location dependent service discoveries, but
use location sensing systems to provide more flexible
service discoveries as well.

The Cooltown project, at Hewlett-Packard
Laboratories, inspires our work [16]. One innovative idea
is to tag things, places, and persons and to associate them
with their “web presence”. URLs are emitted from the
tags and used in web browsers to obtain relative
information from web servers. Thus, things, places, or
people are vividly augmented. We tag places and people
and integrate with our service discovery protocol to
discover available services.

3. Architecture
In this section, first we describe how Splendor

provides a new model to support mobile clients and
services. Next, we illustrate our integration of location-
awareness to our service discovery protocol. Then, we
show the security support for all service discovery parties.
Last, we discuss how Splendor supports privacy.

3.1. A New Service Discovery Model

For simple environments, such as home environments,
client-service models are usually used. There are two
types of components: clients and services. Clients look
for services and services reply if they match required
service attributes. Then clients select services to use. In
more complex environments, client-service-directory
models are deployed. Clients query directories; services
register with directories and provide services to clients;
directories cache service information and answer clients’
queries. After receiving a matched service list from
directories, clients select services, contact services, and
then start to use services.

Providing security in enterprise environments, servers
may be used to store and maintain user information.
System users authenticate with the servers and are
authorized to use services. For other environments, such
as shopping malls, users do not have accounts on the
shopping mall’s computer systems. Third-party servers
may be used for mutual authentication between each
communicating pair, client-service, client-directory, and
service-directory, as shown in Figure 1(a). These third-
party servers may be trusted servers, as in SSDS, or
untrusted servers. They may be inline, online, or offline
third-parties [17]. We use this model to provide security
for stable services. One advantage of this model is that
the client-service-directory model may be used with little
modification to support security for many situations. One
disadvantage, however, is that many limited resource
mobile services are burdened with various security checks
and maintenance themselves.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

3

In Splendor, we propose a new model that has four
types of components: clients, services, directories, and
proxies, shown in Figure 1(b). By including proxies, we
may achieve privacy for service providers, offloading
much mobile service’s computational work to the proxies,
and enabling mobile services to do authentication and
authorization easily. We focus on this model for the rest
of this paper. Non-mobile services work the same way as
in the client-service-directory model, and we do not
discuss in detail here.

3.2. Tag-based Location-aware Service Discovery

There are many technologies to do location sensing.
We give further discussion of location dependent service
discovery in a separate paper. Let’s assume that we have
a passive sensing system, which lets mobile clients and
services read location information. The sensing system
consists of two types of components: readers, which are
attached to the mobile clients or services; beacons, which
emit information either periodically or after reader’s
requests.

We use tags to label locations and people, for
example, entrances of shopping malls and stores, or
Patrick’s and David’s clothes. Tags, which label places,
emit location information and optionally directory’s
addresses and the directory’s certificates. (We use X.509
public key certificates [17] in Splendor, which are
discussed in Section 3.4. For shorthand we use the term
certificates.) The clients use the location information to
search for the relevant services. Mobile services use the
tags’ information to determine that they have moved to
new locations and notify their proxies. Tags attached to
people’s belongings other than the PDAs, such as clothes,
may be used to verify that the PDAs are still in possession
of their owners.

We show a snapshot that uses location tags for service
discovery in Figure 2. In the upper half of the figure, we
show a scenario in which a client may use a service
through its 2.5G/3G connection. In the lower half, a client
may use a wireless LAN for service discovery. Most
service discovery protocols have an assumption that
clients, services, and directories are using one underlying
network connection for service discovery. We argue that
location information not only provides better precision for
location dependent service discovery, it also provides
more flexible network infrastructure for service discovery.

Service discovery may work with available wireless
LANs, 2.5G/3G, other network connections, or
combinations of these as long as the directory’s addresses
are known. Client queries, service registration, and client-
service interactions do not need to be bound to any
network connections.

3.3. Splendor Service Discovery Protocol

3.3.1. Bootstrapping. Multicast addresses are used for
initial communications among clients, services, and
directories. All communicating parties have a priori
knowledge of these multicast addresses, so that no manual
configuration is necessary for any party.

Mobile clients and services have three ways to tell that
they move into new environments. First, they may find
that they are attached to different networks, for example,
that they acquired new IP addresses or were handed over
to new wireless Access Points. Second, directories
periodically announce their unicast network addresses,
and send out solicitation messages asking services to
register. After receiving these messages, mobile clients
and services notice that the messages are from directories,
which are in charge of other domains. Therefore, there
are new directories around and they have moved to new
places. Third, location-aware mobile clients and services
may read location tags, hence they are able to tell whether
they are in new places.

When mobile clients or services move to a new place,
they may solicit directories for announcements. Using the
directories’ unicast addresses, clients may query for
services and services know where to register.

3.3.2. Service Announcements and Lookups. After
bootstrapping, the communications among clients,
services, proxies, and directories are all unicast. In this
way, only parties, which are necessary to be involved,

Figure 1. Two secure service discovery models
with third-party servers. (a). Client-service-

directory model. (b). Client-service-directory-
proxy model.

Internet

Subnet

2.5G/3G

Subnet

2.5G/3G

Proxy

Proxy

Directory

Directory

Tag

Tag

Mobile
clients

Mobile
services

Site infrastructure:
directories, tags,
wireless LANs

Internet
connections

Proxies

Internet
Tag

Tag
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

Client

Client

Service

Service

Figure 2. Location-aware service discovery
architecture with clients, mobile services, directories,

and proxies.

Mobile
Service

Client

Directory Third-party
Server

Mobile
Service

Client Directory

Proxy(a)

(b)

������
������

Third-party
Server

��
��
��
��

����

�����

���
���
��
��

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

4

handle messages. Mobile services authenticate with
proxies and ask proxies to handle registration,
authentication, authorization, and key management for
them. (Mobile services may do all the work themselves
without contact proxies.)

Proxies are trusted servers for services. They manage
services, for example a medical organization offering
licensed physicians for M911 services. When clients
query the directories, they may receive some services
represented by proxies. Therefore, clients need to contact
proxies first and then services. Although an indirection is
added into the interactions, removing overwhelming tasks
such as service authorization from mobile devices is
rewarding. Security policies may be easily modified at
the proxy’s side without worrying about deployment
problems. Mobile service providers do not need to
manage those security policies and settings.

Directories cache service information and answer
client’s queries. They also verify clients’ and services’
identities. Furthermore, directories may provide support
for mobile clients, such as confirmation that the services’
authenticities are checked and help to set up connections
with services. While announcing their unicast addresses,
directories may also announce their public key
certificates. Clients and services use the certificates to
verify and authenticate directories.

Most service discovery protocols store service states
as soft state in directories [2]. Thus, services announce
their lifespan. Before the services expire, they announce
again. Handheld devices are less stable, since they may
have poor wireless connection, or people may just turn
them off. Compared to servers (directories and proxies),
mobile services are transient. For that reason, Splendor
caches soft state information of mobile services in proxies
and deals with the instability simply and well. On the
other hand, Splendor stores services represented by
proxies as hard state in directories. This means that
proxies explicitly register and unregister services with
directories. To solve possibility of the inconsistent
services’ state problem, directories explicitly ask proxies
about the services’ status.

3.3.3. Mobility Support Using Aggregation and
Filtering. One difficult problem in supporting mobile
services is the extremely dynamic property of the services.
Services may come and go, or even be shut down and
come up again quite often. As a consequence, the
directories keep refreshing the services’ status – adding
and removing entries. We address this problem by
extensively using aggregation and filtering at the service
registration stage and service lookup stage.

At the service registration stage, a service may not
need to register and un-register itself repeatedly. In our
scenario for instance, a physician’s PDA will not contact
the proxy as long as it is within the same shopping mall,
although it moves between different stores. Proxies are
also doing aggregation and filtering, whenever it is
necessary. For instance, when a physician is in a
shopping mall and another physician from the same
hospital goes to the same shopping mall, instead of
registering two services with the shopping mall’s

directory, the proxy may only register one. On the other
hand, the mapping at the proxy’s side is changed from one
shopping center associated with one physician to one
shopping center associated with two physicians. When
another physician from the same hospital goes to the
shopping mall, there may be still one record in the
shopping mall’s directory; or when a physician goes
home, the record in the shopping mall’s directory stays
the same. At the service lookup stage, directories may
match and/or filter queries first. When requests go to the
proxies, based on the requests, the proxies may filter and
match some services.

3.4. Security Issues

We consider mutual authentication, service
authorization, confidentiality, integrity, and non-
repudiation for Splendor [18]. Various public key and
symmetric key technologies are used to achieve these
goals. Because symmetric key encryption is much faster
than public key encryption, we use public key techniques
for signature and key management, while using symmetric
key techniques for data encryption and date integrity.
Each party has two sets of public keys: one for encryption
and decryption use, another for signing and verification
use [17].

Before communication, each communicating pair first
sets up a session. In the session set up stage, a new
session key is generated and securely transported to the
other party using public key technologies. The session
key is only known to the pair. It is used in the following
session and discarded after the session finishes. On the
contrary, those public keys used in session set up stage are
used much longer. After communicating parties acquire
session keys, communication data are encrypted using the
session keys.

If any party wants to record messages for non-
repudiation purposes, it may ask the other party to sign the
messages using that party’s signing private key before
encrypted using their shared session keys. Since the
signature uses the private key, which is slow, the
messages are hashed first and then the hashes are signed.
Using this mechanism, the messages are verifiable, even if
the session keys are destroyed. The hashes are used for
message integrity. The receiving party hashes the original
messages and compares with the hashes.

Since clients, services, proxies, and directories may
not belong to the same organization, Splendor is based
upon Public Key Infrastructure (PKI) technologies,
specifically the X.509 strong two way authentication
protocol, which uses certificates [17] for communicating
pairs to mutually authenticate each other and exchange
keys. PKI enables strangers to exchange public keys
securely and its passive infrastructure makes it very
simple to use for end users [19]. X.509 two way
authentication does key transport and to use public key
certificate technology, thus no online trusted servers are
needed to set up sessions and share session keys [17]. A
public key certificate for each entity includes a serial
number, the entity’s name, its public key pair, a signature
of a certification authority (CA) on the certificate, etc.
(Detail certificate structure may be found in [19].) We

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

5

assume that the public key infrastructures are available.
Certificate revocation and trust models of public key
infrastructures are important, but are out of the scope of
this paper. Suppose there are CAs, which sign public
keys for clients, directories, proxies, and services. These
four parties acquire their certificates before interacting
with others. When receiving a pair of new certificates,
each party caches them locally. Before using the public
keys in the certificates, the certificates are verified first:
the signing CA is trusted, the signature is correct, the
certificates are in valid time period and not revoked, and
they are used for right purpose [19]. For example, a
certificate, which a physician uses for his personal
financial use, is not valid for his emergency services.

Service authorization is based on privilege levels.
Therefore, mobile services only keep several levels.
Proxies assign access levels to clients. Security policies
are changed and applied at the proxy’s side, thus no policy
synchronization is necessary at the mobile service’s side.

3.5. Security Protocols

In this subsection, we show Splendor’s security
protocols for authentication, confidentiality, integrity, and
non-repudiation. As shown in Figure 1 (b), the pairs of
components that communicate are: clients and directories,
services and proxies, proxies and directories, clients and
proxies, and clients and services. We show directories’

announcements and the protocols among these pairs in
Figure 3.

• Directory announcements
Using multicast addresses, directories periodically

announce messages including their certificates, unicast
network addresses, and signatures on the addresses,
shown in Figure 3 (a). Clients verify the certificates
before their service lookups. Services forward the
messages to proxies and let proxies verify them.

• Proxy – Directory
Key transport between a proxy and a directory is a

modification of X.509 strong two-way authentication [17]
with some suggestions given by Menezes, et al [17]. (In
(2), the certificates of the directory are not sent to the
proxy, since the proxy has the certificates already.) The
protocol authenticates both parties and exchanges session
keys. A proxy represents a service and registers with a
directory. First, the proxy verifies the directory’s
certificates. Then, it sends its certificates, a message, a
session key encrypted using the directory’s encryption
public key and signs the message and the encrypted
session key using its signing private key, as shown in
Figure 3 (b). The directory verifies the proxy’s
certificates, signature, and the validity of the message.
Then it replies with a message, another session key
encrypted using the proxy’s encryption public key, and
signs the message and the encrypted session key. Next,
the proxy does a similar check.

Figure 3. Security protocols among Splendor components.

Notation: C is a client; D is a directory; P is a proxy; S is a service. ND, a directory’s unicast address. CertEX is an encryption
public key certificate of X. CertVX is a verification public key certificate of X. SX is X’s signature using its signing private key. TX
is the expiration time of the message, which is from X. rX is a unique random number, which X generates in time period TX. M is a
message. K is a session key shared between the sending and the receiving party. AX is X’s multicast message. PX(K, Y) means Y
generates a session key K and encrypts it with its identity using X’s encryption public key. EKXY is an encryption using symmetric
key K shared between X and Y. tX is a timestamp which X attaches. h(M) is a hash of a message, M. (Notation is similar to [17].)

Let F = (TD, D, ND).

D→C:
D→S:

CertED, CertVD, F, SD(F) (1)

(a). A directory’s announcement of its unicast address and
certificates.

Let RP = (TP, rP, D, M, PD(K1, P)) and RD = (rD, TD, rP, P, M,
PP(K2, D)).

P→D: CertEP, CertVP, RP, SP(RP) (1)
P←D: RD, SP(RD) (2)

(b). Key transport between a proxy and a directory. TX and rX
are used against replay attacks.

Let RC = (TC, rC, D, M, PD(K1, C)).

C→D: CertEC, CertVC, RC, SC(RC) (1)
(c). Key transport between a client and a directory.

S→P: EKSP(P, tS, M, AD) (1)
S←P: EKSP(S, tP, M) (2)

 (d). A service forwards a directory’s multicast message to a
proxy. EK here is a derived key from S’s password. AD is a
directory’s multicast message as shown in part (a).

C←P: EKPC(P, C, S, K, tS, M) (1)
S←P: EKPS(P, S, C, K, tS, M) (2)

(e). A session key generated at a proxy and transported to a
client and a service.

X→Y: EKXY(M) (1)

 (f). A message encrypted using a session key shared
between X and Y.

X→Y: EKXY(M, h(M), SX(h(M))) (1)

(g). A message is hashed and the hash is signed using X’s
signing private key before encryption using the session key
shared between X and Y.

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

6

• Client-Directory
A client checks the directory’s certificates when it

receives them. If a client inquiries a directory, it sends a
query to the directory with its certificates, a secret session
key encrypted using the directory’s public key, as shown
in Figure 3 (c). The directory verifies the client’s
certificates and then records the session key. This is half
of the X.509 strong two-way authentication [17], which
only the client shows its authenticity, due to the client has
already verified the directory’s certificates and it
implicitly authenticates the directory in the following
messages exchange between them.

• Service - Proxy
The key transport between a service and a proxy may

be based on public-key encryption as the techniques we
use for key transport between a proxy and a directory. In
some situations, a service provider is a user of its proxy
and the proxy is trustworthy. To offload tasks from
mobile services such as services on PDAs, we provide an
alternative solution, which uses symmetric encryption
techniques. We use a symmetric key derived from the
service provider’s password.

When a service moves to a place and wants to register
with a directory, it sends a timestamp, a message
requesting to register with a directory, the directory’s
multicast message encrypted using the derived symmetric
key shared with its proxy [17], as shown in Figure 3 (d).
The proxy replies it with a message. We may optionally
let the service provider type in a password to make sure
that he is still in the possession of the PDA.

• Client-Proxy
After receiving a matched service list from a directory,

a client selects and contacts a service or a proxy. If the
client contacts a proxy, it verifies the certificates of the
proxy that the directory sent along in the matched list.
Next, the client and the proxy authenticate, generate, and
transport a session key as proxies communicate with
directories. Then the proxy checks the access permission
and grants a privilege to the client. The proxy also
generates a session key to be used between the client and
the service as shown in Figure 3 (e). If the service does
not want to use this session key, it may generate a session
key itself, which is encrypted using the client’s encryption
public key.

Thus, we have shown that all the communicating pairs
share session keys. After that, all the communication data
are encrypted using session keys. For non-repudiation
purpose, data are hashed and hashes are signed before
encryption. We show these in Figure 3 (f) and (g).

3.6. Privacy Issues

Very few service discovery protocols have considered
privacy issues [2]. In SSDS, communication data are
encrypted to prevent information from being exposed to
eavesdroppers. In Splendor, we also encrypt
communication data. In the M911 scenario, the
communications are confidential, which not only prevent
eavesdropping, but also avoid exposure to the parties that
do not need to know. For example, Patrick’s medical
history is not exposed to the shopping mall computer

systems in a medical emergency situation, because the
shopping mall system does not know the session key
shared between Patrick and David.

Furthermore, we choose to use a passive location
sensing system, so only users are aware of their location,
and the location sensing system is not aware of its users.
Thus, users’ location information is kept private until
users want to release their positions.

In the Splendor service discovery model, hiding the
identity of a service provider is quite easy. We use the
M911 scenario as an example. A physician may go to a
shopping mall many times, but very few times there are
emergency situations. Providing physicians’ help in an
emergency at the price of exposing their private
information to the directories is not ideal. Splendor uses
proxies to provide privacy for mobile services. Before
registering with directories, proxies may generate names
that only make sense to the proxies themselves for the
services. In M911, a proxy registers a physician with a
directory as “ABC hospital service provider 1001,”
instead of registering the physician’s real ID. Only
proxies keep the mappings from the registered service
names to the services. Therefore, the directories are
unable to know the actual service providers and they are
only aware that a service provider is from a known proxy.
The proxies, however, are responsible for the services that
they represent and register with the directories.
Directories may require proxies to sign their messages to
assure proxies’ responsibility. If proxies do hide the
identities of the services, the directories do not reply to
clients with matched services, but with proxies instead.

4. Performance Analysis and Evaluation
We analyze the overhead of adding proxies, providing

privacy support, location-awareness integration, and
security protocols in Splendor. First, the overhead of the
indirection caused by adding proxies is small. The
difference between the client-service-directory model and
the client-service-directory-proxy model is that in the
former model, all communications are within a few
network hops, but for the latter model, a number of
messages may be sent over the Internet. Nevertheless, the
round trip delay over the Internet is not critical for most of
the applications at the service lookup stage. Second, the
addition of proxies is transparent to the directories.
Clients, however, feel the indirection: they mutually
authenticate with proxies, but then communicate with
services. If mobile services do not generate session keys
themselves, there are the same numbers of mutual
authentications in the client-service-directory-proxy
model and the client-service-directory model. Third, if
there are more than one service matched to a client’s
request and the proxy does not select a matched service
for the client, there is another round of message exchange,
in which the proxy lets the client pick one service.
Fourth, integrating location awareness has overhead for
mobile clients and services, but reading location tag
information does not have overhead on the critical path of
the service discovery processes.

Our software running on PDAs are developed using
Microsoft eMbedded Visual C++ 3.0. We measured

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

7

average overhead of 1000 security operations for mobile
clients and services on a ARM SA1110 206 MHz
computer (Compaq iPAQ) with 64MB memory running
Microsoft PocketPC 3.0. Other software is developed
using Microsoft Visual Studio .NET 1.0. We measured
average overhead of 1000 security operations for proxies
and directories on an Intel Pentium III 866MHz computer
with 192MB memory running Windows 2000
Professional. The cryptography software packages, which
we use, come with the development tools.

As we see in Table 1, these security operations are
fast. The longest operations are the public key operations,
which take hundreds of milliseconds. Public key pairs are
generated once and used for a long time. Session keys are
generated and encrypted using encryption public keys in
the session setup stage; the overhead is less than 400 ms.
After sessions are setup, messages are exchanged many
times, but only symmetric key encryptions are necessary,
which take less than less 1ms for 1KB messages. For
parties, which need to exchange messages with signatures
for the purpose of non-repudiation, the overhead is less
than 20ms for 1KB messages. (We choose 1024-bit RSA
encryption keys on PC, but 512-bit on iPAQs, because it
is limited by the software package that we use for iPAQ.)

We have discussed certificate validation in Section
3.4. Although we do not discuss PKI here, certificate
validation may affect performance. Various trust models
and certificate revocation mechanisms affect performance
differently. Detailed discussion of PKI trust models may
be found in [19] and certificate revocation may be found
in [19, 20]. We assume that for different applications
different trust models may be used. For example, Secure
Electronic Transaction (SET) has a hierarchical model for
which the certificate validation is efficient [21]. RSA

Research tested its CA product on eight million
certificates, and the average time of online certificates
status checking in the tests is less than 1 second [22].
This result gives us a good estimate of certificate status
checking for such a large numbers of certificates.

4.1. The Critical Path of M911

The interaction among the four parties in M911 is
shown in Figure 4. Let’s consider the critical path of
M911 -- from the time that a patient has a request to the
time that the patient’s PDA exchange information with the
physician’s PDA. It is from step 12 to step 21.

We further look into the critical path of M911. In
Figure 5, we define the time of the major operations and
then give the response time of the critical path. The
operation of certificate validation and the operation of
service matching at directories and proxies are parallel.
Using the data discussed above, we estimate that the
response time of the critical path in M911 should be in a
reasonable time.

One possible improvement is that the directory sends a
confirmation to the client that the services’ authenticities
are checked, so the client does not need to verify the
certificates itself. This helps the patient’s PDA set up
connections with the services. Thus, step 18 (TV2) is
removed and it will give us a better response time.

5. Conclusion and Future work
In this paper, we discussed a new service discovery

model, Splendor, which supports nomadic users in public
environments. Splendor offers mutual authentication
among components; simplifies service authorization;
provides communication confidentiality and message
integrity; and supports non-repudiation. User privacy,
data privacy, and user location privacy are achieved. The
security protocols also are designed to protect against

Table 1. Public key and symmetric key operation
overhead.

 PC iPAQ
Key generation
 RSA encryption public key pair 253ms 395ms
 RSA 512-bit signature public key

pair
86ms 386ms

 DES 64-bit session key 0.03ms 0.18ms
Encryption
 RSA public key encrypting a DES

64 bit session key
247ms 373ms

 DES 64-bit symmetric key
encrypting a 1K bytes message

0.07ms 0.89ms

Decryption
 RSA private key decrypting a DES

64 bit session key
7.55ms 15ms

 DES 64-bit symmetric key
decrypting a 1K bytes message

0.07ms 0.82ms

Signature
 Hashing a 1K bytes message and

RSA 512-bit signature private key
signing

1.42ms 15.5ms

 Hashing a 1K bytes message and
RSA 512-bit signature public key
verification

0.13ms 1.47ms

Patients ProxiesDirectories Emergency service providers

7. Ask for service registration()

12. Look for emergency services()

16. Contact a proxy()

5. Security check()

8. Security check()

21. Contact service providers()

Tags

1. Emit location information()

2. Emit location information()3. Announce certificates and address()

4. Announce certificates and address()

6. Security check()

19. Forward or filter service requests()

13. Security check()

10. Security check()

15. Select a service()

17. Security check()

11. Security check()

18. Security check()

20. Nofity the patient()

14. Reply matched services()

9. Register services()

Figure 4. Interaction of the four parties in M911.
(10,11 and 17,18 are mutual security checks.)

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

8

attacks such as eavesdroppers and replay attacks.
Location-awareness is integrated to our service discovery
protocol to support location dependent service better and
reduce the requirements of the underlying network
infrastructure. We are working on extending the
capability of proxies to support service discovery in other
pervasive computing environments. We will also design
different service authorization strategies to support
different types of users with different service
requirements.

Reference
[1] T. Kindberg and A. Fox, "System Software for Ubiquitous
Computing," IEEE Pervasive Computing, January-March, 2002,
pp. 70-81.

[2] F. Zhu, M. Mutka, and L. Ni, Classification of Service
Discovery in Pervasive Computing Environments, MSU-CSE-
02-24, Michigan State University, East Lansing, 2002.

[3] "Specification of the Bluetooth System -- Core," Bluetooth
SIG, Version 1.1, February 22, 2001, available at
http://www.bluetooth.org/docs/Bluetooth_V11_Core_22Feb01.p
df.

[4] M. Nidd, "Service Discovery in DEAPspace," IEEE
Personal Communications, August, 2001, pp. 39-45.

[5] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J.
Lilley, "The design and implementation of an intentional naming
system," 17th ACM Symposium on Operating Systems
Principles (SOSP ’99), Kiawah Island, SC, 1999.

[6] M. Balazinska, H. Balakrishnan, and D. Karger,
"INS/Twine: A Scalable Peer-to-Peer Architecture for
Intentional Resource Discovery," Pervasive 2002 - International
Conference on Pervasive Computing, Springer-Verlag, Zurich,
Switzerland, 2002.

[7] "Jini™ Architecture Specification," Sun Microsystems,
Version 1.2, December, 2001, available at
http://wwws.sun.com/software/jini/specs/.

[8] "Salutation Architecture Specification," Salutation
Consortium, Version 2.0c, June 1, 1999, available at
ftp://ftp.salutation.org/salute/sa20e1a21.ps.

[9] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, and R.
Katz, "An Architecture for a Secure Service Discovery Service,"
Fifth Annual International Conference on Mobile Computing
and Networks (MobiCom '99), Seattle, WA, 1999, pp. 24-35.

[10] E. Guttman, C. Perkins, J. Veizades, and M. Day, "Service
Location Protocol, Version 2," IETF, RFC2608, June 1999,
available at http://www.ietf.org/rfc/rfc2608.txt.

[11] "Universal Plug and Play Device Architecture," Microsoft
Corporation, Version 1.0, 08 June, 2000, available at
http://www.upnp.org/download/UPnPDA10_20000613.htm.

[12] M. Weiser, "The Computer for the 21st Century,"
Scientific American, vol. 265, Issue 3, 1991, pp. 66-75.

[13] R. Want, A. Hopper, V. Falcão, and J. Gibbons, "The
Active Badge Location System," ACM Transactions on
Information Systems, vol. 10, 1, 1992, pp. 91-102.

[14] J. Hightower and G. Borriello, "Location Systems for
Ubiquitous Computing," Computer, vol. 34, 8, 2001, pp. 57-66.

[15] A. Ward, Sensor-driven Computing, PhD thesis, Corpus
Christi College, University of Cambridge, Cambridge, UK,
1998.

[16] "People, Places, Things: Web Presence for the Real
World," T. Kindberg, J. Barton, J. Morgan, G. Becker, D.
Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris,
J. Schettino, and B. Serra, available at
http://cooltown.hp.com/dev/wpapers/index.asp.

[17] A. Menezes, P. v. Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography, CRC Press, 1996.

[18] W. Stallings, Cryptography and Network Security:
Principles and Practice, 2nd ed, Prentice Hall, 1998.

[19] S. Lloyd, C. Adams, and S. Kent, Understanding Public-
Key Infrastructure: Concept, Standards, and deployment
considerations, New Riders, 1999.

[20] D. Cooper, "A Model of Certificate Revocation," Fifteenth
Annual Computer Security Applications Conference, 1999, pp.
256-264.

[21] "SET Secure Electronic Transaction Specification Book 2:
Programmer’s Guide," Visa and MasterCard, Version 1.0, May
31, 1997, available at
http://www.setco.org/download/set_bk2.pdf.

[22] "Scalability Proof of Concept: RSA Keon Certificate
Authority Eight Million Certificate Test," RSA Security Inc,
2002, available at
http://www.rsasecurity.com/products/keon/whitepapers/kca/KC
AS_WP_0702.pdf.

Figure 5. The critical path response time of M911.

TQ1 - time interval that a client pushes a button and a
directory receives the query message.
TQ2 - time interval that the client sends out a service
request message and a proxy receives.
TR1 - time interval that the directory sends out the client’s
query result and the client receives.
TR2 - time interval that the proxy sends out a service’s
network address and the client receives.
TS1 - time interval that the directory finds a list of matched
services or proxies then encrypted the reply message.
TS2 - time interval that the proxy finds a matched service
then encrypted the reply message.
TV1 - time interval that the directory verifies the
authenticity and status of the client’s certificates.
TV2 - time interval that the client verifies the authenticity
and status of the proxy’s certificates.
TV3 - time interval that the proxy verifies the authenticity
and status of the client’s certificates.
TC - the response time of the critical path.
TC = TQ1 + max (TS1, TV1) + TR1+ TV2+ TQ2 + max
(TS2, TV3) + TR2

Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom’03)
0-7695-1895/03 $17.00 © 2003 IEEE 0-7695-1893-1/03 $17.00 © 2003 IEEE

